- Previous Article
- Next Article
- Table of Contents
PROGRESS IN MATERIALS SCIENCE, Vol.47, No.6, 559-619, 2002
Crystallisation kinetics and microstructure development in metallic systems
The primary crystallisation of a highly undercooled/supersaturated liquid is considered, and the application to nanocrystallisation by heat treatment of metallic glasses is studied from the thermodynamic, kinetic and microstructural point of view. The thermodynamic evolution is modelled assuming transformation rates low enough to ensure thermal equilibrium to be almost achieved. A mean field approximation is used, which allows us to determine the time evolution of the kinetic variables governing the transformation. The interplay between interface and diffusion controlled growth rate is studied, and both nucleation and crystal growth changes within the transformation are considered as soft mechanisms. The kinetics of the transformation is described in the framework of the Kolmogorov, Johnson and Mehl and Avrami (KJMA) model, which is adequately generalized for primary transformations. The microstructural evolution is described by a populational model, also based on KJMA. The predicted kinetic evolution results are compared to the experimental data on the primary nanocrystallisation of a FINEMET alloy. (C) 2002 Elsevier Science Ltd. All rights reserved.