- Previous Article
- Next Article
- Table of Contents
PROGRESS IN MATERIALS SCIENCE, Vol.54, No.4, 427-510, 2009
Texture evolution in equal-channel angular extrusion
The focus of this article is texture development in metals of fcc, bcc, and hcp crystal structure processed by a severe plastic deformation (SPD) technique called equal-channel angular extrusion (ECAE) or equal-channel angular pressing (ECAP). The ECAE process involves very large plastic strains and is well known for its ability to refine the grain size of a polycrystalline metal to submicron or even nanosize lengthscales depending on the material. During this process, the texture also changes substantially. While the strength, microstructure and formability of ECAE-deformed metals have received much attention, texture evolution and its connection with these properties have not. In this article, we cover a multitude of factors that can influence texture evolution, such as applied strain path, die geometry, processing conditions, deformation inhomogeneities, accumulated strain, crystal structure, material plastic behavior, initial texture, dynamic recrystallization, substructure, and deformation twinning. We evaluate current constitutive models for texture evolution based on the physics they include and their agreement with measurements. Last, we discuss the influence of texture on post-processed mechanical response, plastic anisotropy, and grain refinement, properties which have made ECAE, as well as other SPD processes, attractive. It is our intent to make SPD researchers aware of the importance of texture development in SPD and provide the background, guidance, and methodologies necessary for incorporating texture analyses in their studies. (C) 2009 Elsevier Ltd. All rights reserved.