화학공학소재연구정보센터
Clean Technology, Vol.19, No.4, 355-369, December, 2013
혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술
Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion
E-mail:
초록
재생 원료인 바이오매스를 이용한 에너지 생산에 있어서 경제성은 가장 중요한 인자 중 하나이다. 이러한 관점에서 슬러지 혐기소화에 의해 생산되는 바이오가스는 다른 바이오매스에 비해 매우 저렴하며 처분 비용 절감으로 얻는 이익이 부가적으로 발생하기 때문에 경제성이 매우 높다. 슬러지 혐기소화에서 기질의 가수분해 속도는 전체 소화 성능을 결정짓는 인자이며 혐기소화 속도를 향상시키기 위한 슬러지 전처리 기술이 많이 개발되었다. 슬러지 전처리는 생물학적, 열 가수분해, 초음파, 기계적 방법 등 다양한 기술이 실제 시설에 적용되었다. 전처리는 슬러지 가용화를 촉진하고 고형물을 감소시키면서 바이오가스 생산을 늘리는 등 혐기소화 효율을 향상시켰다. 본문에서는 전처리 방법의 기술적 특성을 소개하고 각 전처리 방법의 에너지 수지와 경제성을 비교하여 적절한 전처리 기술을 선정하기 위한 기준을 마련하고자 하였다. 조사 결과 고온 혐기소화와 열 가수분해가 가장 경제성이 높고 다음으로 Cell ruptureTM, OpenCELTM, MicroSludgeTM, 초음파의 순서로 평가되었다. 경제성 평가에 있어서 슬러지의 최종 처분 비용이 가장 큰 요소가 되며 따라서 최종 처분 슬러지의 수분 함량이 경제성 평가에 결정적인 역할을 하였다.
Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell ruptureTM, OpenCELTM, MicroSludgeTM, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.
  1. http://attfile.konetic.or.kr/konetic/xml/market/51A1A0720223.pdf
  2. Gujer W, Zehnder AJB, Water Sci. Technol., 15(8-9), 127 (1983)
  3. Parkin JF, Owen WF, J. Environ. Eng. Div. Amer.Soc. Civil Eng., 122, 867 (1986)
  4. http://en.wikipedia.org/wiki/Anaerobic_digestion
  5. Appels L, Baeyens J, Degreve J, Dewil R, Prog. Energy Combust. Sci., 34, 755 (2008)
  6. Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I, J. Hazard. Mater., 183(1-3), 1 (2010)
  7. Rudolfs W, Heukelelian H, Ind. Eng.Chem., 22, 96 (1930)
  8. Roberts R, Son L, Davies WJ, Forster CF, Trans. Chem., 77(B), 93 (1999)
  9. Oles J, Dichtl N, Niehoff HH, Water Sci. Technol., 36(6-7), 449 (1997)
  10. Aoki N, Kawase M, Water Sci. Technol., 23, 1147 (1991)
  11. Ferrer I, Vazquez F, Font X, Bioresour. Technol., 101(9), 2972 (2010)
  12. Song YC, Kwon SJ, Woo JH, Water Res., 38, 1653 (2004)
  13. Ponsa S, Ferrer I, Vazquez F, Font X, Water Res., 42, 3972 (2008)
  14. Ge H, Jensen PD, Batstone DJ, Water Res., 44, 123 (2010)
  15. Cabirol N, Oropeza MR, Noyola A, Water Sci. Technol., 45(10), 269 (2002)
  16. De Leon C, Jenkins D, Water Sci. Technol., 46(10), 147 (2002)
  17. Hartmann H, Ahring BK, Biotechnol. Bioeng., 90(7), 830 (2005)
  18. Lu JQ, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK, J. Environ. Manage., 88, 881 (2008)
  19. Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK, Water Res., 37, 4561 (2003)
  20. Climent M, Ferrer I, Baeza MD, Artola A, Vazquez F, Font X, Chem. Eng. J., 133(1-3), 335 (2007)
  21. Bolzonella D, Pavan P, Zanette M, Cecchi F, Ind. Eng. Chem. Res., 46(21), 6650 (2007)
  22. Ferrer I, Ponsa S, Vazquez F, Font X, Biochem. Eng.J., 42, 186 (2008)
  23. Ferrer I, Serrano E, Ponsa S, Vazquez F, Font X, J. Residuals Sci. Technol., 6, 11 (2009)
  24. Schafer P, Farrell J, Newman G, Vandenburgh S, “Advanced Anaerobic Digestion Performance Comparisons,” WEFTEC 2002, Sep. 29, Chicago, IL (2002)
  25. Borja R, Banks CJ, Garrido A, Process Biochem., 29(7), 587 (1994)
  26. Subramanian S, Kumar N, Murthy S, Novak JT, J. Residuals Sci. Technol., 4, 17 (2007)
  27. Shiota N, Akashi A, Hasegawa S, Water Sci. Technol., 45, 127 (2002)
  28. Hasegawa S, Shiota N, Katsura K, Akashi A, Water Sci. Technol., 41, 163 (2000)
  29. Sakai Y, Aoyagi T, Shiota N, Akashi A, Hasegawa S, Water Sci. Technol., 42, 81 (2000)
  30. Dumas C, Perez S, Paul E, Lefebvre X, Bioresour. Technol., 101(8), 2629 (2010)
  31. Deleris S, Larose A, Geaugey V, Lebrun T, “Innovative Strategies for the Reduction of Sludge Production in Activated Sludge Plant: BIOLYSIS® O and BIOLYSIS® E,” in IWA International Conference on Biosolids 2003, Water Sludge as a Resource, Jun. 23-25, Trondheim, Norway (2003)
  32. Tanaka S, Kobayashi T, Kamiyama KI, Bildan LNS, Water Sci. Technol., 35, 209 (1997)
  33. Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J, J. Biosci. Bioeng., 95(3), 271 (2003)
  34. Valo A, Carrere H, Delgenes JP, J. Chem. Technol. Biotechnol., 79(11), 1197 (2004)
  35. Mouneimne AH, Carrere H, Bernet N, Delgenes JP, Bioresour. Technol., 90(1), 89 (2003)
  36. Everret JG, Water Res., 8, 899 (1974)
  37. Heo NH, Park SC, Lee JS, Kang H, Park DH, Appl. Biochem. Biotechnol., 105, 567 (2003)
  38. Jolly M, Gillard J, “The Economics of Advanced Digestion," 14th European Biosolids and Organic Resources Conference and Exhibition, Nov. 9-11, Leeds, UK (2009)
  39. Crawford G, Sandino J, Energy Efficiency in Wastewater Treatment in North America: a Compendium of Best Practices and Case Studies of Novel Approaches, IWA Publishing,London, pp. 3-14-3-19 (2010)
  40. Yasui H, Shibata M, Water Sci. Technol., 30(9), 11 (1994)
  41. Sakai Y, Fukasu T, Yasui H, Shibata M, Water Sci. Technol., 36(11), 163 (1997)
  42. Chu LB, Yan ST, Xing XH, Sun XL, Jurcik B, Water Res., 43, 1811 (2009)
  43. Weemaes M, Grootaerd H, Simoens F, Verstraete W, Water Res., 34, 2330 (2000)
  44. Yeom IT, Lee KR, Lee YH, Ahn KH, Lee SH, Water Sci. Technol., 46(4-5), 421 (2002)
  45. Goel R, Tokutomi T, Yasui H, Noike T, Water Sci. Technol., 48(4), 85 (2003)
  46. Battimelli A, Millet C, Delgenes JP, Moletta R, Water Sci. Technol., 48(4), 61 (2003)
  47. Bougrier C, Battimelli A, Delgenes JP, Carrere H, Ozone-Sci. Eng., 29, 201 (2007)
  48. Rivero JAC, Madhavan N, Suidan MT, Ginestet P, Audic JM, J. Environ. Eng. ASCE., 132, 638 (2006)
  49. Song JJ, Takeda N, Hiraoka M, Water Sci. Technol., 26(3-4), 867 (1992)
  50. Barlindhaug J, Ødegaard H, Water Sci Technol., 33, 99 (1996)
  51. Gavala H, Yenal U, Skiadas I, Westermann P, Ahring B, Water Res., 37, 4561 (2003)
  52. Ferrer I, Climent M, Baeza MM, Artola A, Vazquez F, Font X, “Effect of Sludge Pretreatment on Thermophilic Anaerobic Digestion,” Proceedings of the IWA Specialised Conference on Sustainable Sludge Management: Stateof-the-art, Challenges and Perspectives, May 29-31, Moscow, Russia (2006)
  53. Valo A, Carrere H, Delgenes JP, J. Chem. Technol. Biotechnol., 79(11), 1197 (2004)
  54. Panter K, Kleiven H, “Ten Years Experience of Full Scale Thermal Hydrolysis Projects,” 10th European Biosolids and Biowastes Conference, Wakefield, UK (2005)
  55. http://www.veoliawaterst.com/biothelys/en/
  56. http://www.veoliawaterst.com/exelys/en/
  57. Evans TD, “Independent review of retrofitting Cambi to MAD,” Water Environment Federation 17th Annual Residuals & Biosolids Conference, Feb. 19-22, Baltimore MD (2003)
  58. Chu CP, Chang BV, Liao GS, Jean DS, Lee DJ, Water Res., 35, 1038 (2001)
  59. Laborde JL, Bouyer C, Caltagirone JP, Gerard A, Ultrason., 36, 589 (1998)
  60. Save S, Pandit A, Joshi J., Chem. Eng. J. Biochem. Eng. J., 55, B67 (1994)
  61. Shirgaonkar IZ, Pandit AB, Ultrason. Sonochem., 5, 53 (1998)
  62. Balasundaram B, Pandit A, Biochem. Eng. J., 8, 251 (2001)
  63. Gogate PR, Kabadi AM, Biochem.Eng. J., 44, 60 (2009)
  64. Machnicka A, Grubel K, Suschka J, Water SA., 35, 129 (2009)
  65. Kim DJ, Youn Y, Korean J. Chem. Eng., 28(9), 1876 (2011)
  66. Chu CP, Lee DJ, Chang BV, You CS, Tay JH, Water Res., 36, 2681 (2002)
  67. Suslick KS, Ultrasound : Its Chemical, Physical, and Biological Effects, VCH Publishers, New York (1988)
  68. Tiehm A, Nickel K, Neis U, Water Sci. Technol., 36, 121 (1997)
  69. Timothy G, Leighton M, Prog.Biophy. Mol. Biol., 93, 3 (2007)
  70. Van Bavel E, Prog. Biophy.Mol. Biol., 93, 374 (2007)
  71. Bougrier C, Carrere H, Delgenes JP, Chem. Eng. J., 106(2), 163 (2005)
  72. Wang F, Ji M, Lu S, Environ. Prog., 25, 257 (2006)
  73. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY, Ultrason. Sonochem., 18, 1 (2011)
  74. http://www.ovivowater.com
  75. http://www.sonico.net
  76. Onyeche TI, “Economic Benefits of Low Pressure Sludge Homogenization for Wastewater Treatment Plants,” IWA Specialist Conferences, Moving forward Wastewater Biosolids Sustainability, Moncton, New Brunswick, Canada (2007)
  77. http://www.sludgedisintegration.com
  78. http://www.ecosolids.com/
  79. Dohanyos M, Zabranska J, Jenicek P, Water Sci. Technol., 36, 145 (1997)
  80. Zabranska J, Dohanyos M, Jenicek P, Kutil J, Water Sci. Technol., 53, 229 (2006)
  81. http://www.opencell.com
  82. Tchobanoglous G, Burton F, Stensel H, Metcalf and Eddy Inc. Wastewater Engineering, Treatment and Reuse, Mc-Graw-Hill, New York, 799 (2003)
  83. Watts S, Hamilton G, Keller J, Water Sci. Technol., 53, 149 (2006)
  84. Muller JA, Water Sci. Technol., 42, 167 (2000)
  85. Wang XX, Qiu ZF, Lu SG, Ying WC, J. Hazard. Mater., 176(1-3), 35 (2010)
  86. Yin GQ, Liao PH, Lo KV, J. Environ. Sci. Heal. A., 42, 1177 (2007)
  87. Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA, Crit. Rev. Environ. Sci. Technol., 39, 433 (2009)
  88. Suschka J, Machnicka A, Grubel K, Arch. Environ. Prot., 33, 55 (2007)
  89. Marti N, Ferrer J, Seco A, Bouzas A, Water Res., 42, 4609 (2008)
  90. Marti N, Pastor L, Bouzas A, Ferrer J, Seco A, Water Res., 44, 2371 (2010)
  91. Zhang C, Chen YG, Environ.Sci. Technol., 43, 6164 (2009)
  92. Pastor L, Mangin D, Ferrer J, Seco A, Bioresour. Technol., 101(1), 118 (2010)
  93. Bougrier C, Delgenes JP, Carrere H, Process Saf. Environ. Protect., 84(B4), 280 (2006)
  94. Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J, J. Biosci. Bioeng., 95(3), 271 (2003)
  95. Yang XY, Wang X, Wang L, Bioresour. Technol., 101(8), 2580 (2010)
  96. Muller JA, Winter A, Strunkmann G, Water Sci. Technol., 49, 97 (2004)
  97. Whitlock D, Sandino J, Novak J, Johnson B, Fillmore L, “Evaluation Methology Framework for Processes to Reduce Waste Activated Solids, 2010 WEF Residuals and Biosolids Conference (2010)
  98. Dhar BR, Nakhla G, Ray MB, Waste Manage., 32, 542 (2012)
  99. Kalogo Y, Monteith H, “State of Science Report: Energy and Resource Recovery from Sludge,” Water Environment Research Foundation (2008)