Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 9-12, January, 2014
Low-temperature catalytic conversion of lignite: 3. Tar reforming using the supported potassium carbonate
E-mail:
Alumina-supported K2CO3-LaMn0.8Cu0.2O3 was investigated for the catalytic conversion of tar, produced from lignite, into syngas under inert and steam-reforming conditions. A double-bubble fluidized bed reactor system, equipped with a micro gas chromatograph and a collecting system to analyze permanent gases and condensable species, was developed to screen the catalytic conversion of tar components below 700 ℃. The redox properties of catalysts, estimated by hydrogen temperature programmed reduction analyses, were correlated with their catalytic performance in tar conversion. The synthesized catalyst effectively converted tars into hydrogen-rich syngas and also improved tar reforming by inhibiting coke deposition.
- Kern S, Pfeirter C, Hofbauer H, Fuel Processing Technology., 111, 1 (2013)
- Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D, Applied Thermal Engineering., 54(1), 111 (2013)
- Domazetis G, James BD, Liesegang J, Raoarun M, Kuiper M, Potter ID, Oehme D, Fuel, 93(1), 404 (2012)
- Matsuoka K, Hosokai S, Kuramoto K, Suzuki Y, Fuel Processing Technology., 109, 43 (2013)
- Kariznovi M, Nourozieh H, Abedi J, Chen ZX, Chem. Eng. Res. Des., 91(3), 464 (2013)
- Ahmed I, Gupta AK, Applied Energy., 102, 355 (2013)
- Karatas H, Olgun H, Akgun F, Fuel Processing Technology., 106, 666 (2013)
- Abani N, Ghoniem AF, Fuel., 104, 664 (2013)
- Bhutto AW, Bazmi AA, Zahedi G, Progress in Energy and Combustion Science., 39(1), 189 (2013)
- Shaddix CR, Combust. Flame, 159(10), 3003 (2012)
- Wang H, Zhao Z, Xu CM, Liu J, Catal. Lett., 102(3-4), 251 (2005)
- Ekins P, Hydrogen Energy: Economic and Social Challenges; Earthscan (2009)
- Sutton D, Kelleher B, Ross JRH, Fuel Process. Technol., 73(3), 155 (2001)
- Li D, Ishikawa C, Koike M, Wang L, Nakagawa Y, Tomishige K, International Journal of Hydrogen Energy., 38(9), 3572 (2013)
- Fredriksson HOA, lance TJ, Thu˝ ne PC, Veringa HJ, Niemantsverdriet JW, Applied Catalysis B: Environmental., 130-131, 168 (2013)
- Koike M, Ishikawa C, Li D, Wang L, Nakagawa Y, Tomishige K, Fuel., 103, 122 (2013)
- Min Z, Yimsiri P, Zhang S, Wang Y, Asadullah M, Li CZ, Fuel., 103, 950 (2013)
- Grieco EM, Baldi G, Chem. Eng. Res. Des., 90(11), 1997 (2012)
- Ozaki J, Takei M, Takakusagi K, Takahashi N, Fuel Processing Technology., 102, 30 (2012)
- Kong M, yang Q, Fei J, Zheng Z, International Journal of Hydrogen Energy., 37, 13355 (2012)
- Wang L, Hisada Y, Koike M, Li D, Watanabe H, Nakagawa Y, Tomishige K, Applied Catalysis B: Environmental., 121-122, 95 (2012)
- Sariog˘lan A, International Journal of Hydrogen Energy., 37(10), 8133 (2012)
- Bangala DN, Abatzoglou N, Martin JP, Chornet E, Ind. Eng. Chem. Res., 36(10), 4184 (1997)
- Corella J, Aznar MP, Gil J, Caballero MA, Energy Fuels, 13(6), 1122 (1999)
- Rapagna S, Jand N, Kiennemann A, Foscolo PU, Biomass Bioenerg., 19(3), 187 (2000)
- Antunes AP, Ribeiro MF, Silva JM, Ribeiro FR, Magnoux P, Guisnet M, Appl. Catal. B: Environ., 33(2), 149 (2001)
- Miura K, Kawase M, Nakagawa H, Ashida R, Nakai T, Ishikawa T, J. Chem. Eng. Jpn., 36(7), 735 (2003)
- Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y, Fuel, 85(2), 143 (2006)
- Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Appl. Catal. B: Environ., 96(1-2), 232 (2010)
- Yue BH, Wang XG, Ai XP, Yang J, Li L, Lu XG, Ding WZ, Fuel Process. Technol., 91(9), 1098 (2010)
- Han J, Kim H, Renewable & Sustainable Energy Reviews., 12, 397 (2008)
- Kim YK, Hao LF, Park JI, Miyawaki J, Mochida I, Yoon SH, Fuel, 94(1), 516 (2012)
- Slagtern A, Olsbye U, Appl. Catal. A: Gen., 110(1), 99 (1994)
- Doggali P, Kusaba S, Teraoka Y, Chankapure P, Rayalu S, Labhsetwar N, Catalysis Communications., 11, 665 (2010)
- Miyazaki T, Tokubuchi N, Inoue M, Arita M, Mochida I, Energy Fuels, 12(5), 870 (1998)