화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 108-112, January, 2014
Synthesis of epoxy encapsulated organoclay nanocomposite latex via phase inversion emulsification and its gas barrier property
E-mail:
Waterborne epoxy-clay nanocomposites were prepared by encapsulation of organoclays in epoxy latex particles via phase inversion emulsification. The organoclays were exfoliated in the epoxy backbone before compounding with a hardener and subsequently dispersing in water. The encapsulation of clay platelets into the waterborne epoxy latex particle resulted in an exponential increase in particle size, from 5 to 10 times at a clay loading of only 1-2 wt%, respectively. The XRD patterns and TEM images show that clay platelets were well intercalated and exfoliated in the epoxy matrix. The gas barrier performance of the epoxy-clay nanocomposite strongly depended on the kind of organoclay. The best oxygen barrier efficiency was approximately 14% at 2 wt% clay loading.
  1. Milne A, in: Marrion A (Ed.), The Chemistry and Physics of Coatings, RSC, Cambridge, 8 (2004)
  2. Streiberger HJ, in: Streiberger HJ,Do¨ ssel KF (Eds.), Automotive Paints and Coatings, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1 (2008)
  3. Zhang Z, Huang Y, Liao B, Cong G, Coatings, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim., 37, 1207 (2001)
  4. Bentley J, in: Lambourne R, Strivens TA (Eds.), Paint and Surface Coatings - Theory and Practice, Woodhead Publishing Limited, Cambridge, 67 (1999)
  5. Rink HP, in: Streiberger HJ, Do¨ ssel KF (Eds.), Automotive Paints and Coatings, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 241 (2008)
  6. Forsgen A, Corrosion Control through Organic Coatings, CRC Press, Boca Raton (2006)
  7. Bagherzadeh MR, Mahdavi F, Progress in Organic Coatings., 60, 117 (2007)
  8. Usuki A, Hasegawa N, Kato M, Advances in Polymer Science., 179, 135 (2005)
  9. Alexandre M, Dubois P, Materials Science and Engineering., 28, 1 (2000)
  10. Zeng QH, Yu AB, Lu GQ, Paul DR, Journal of Nanoscience and Nanotechnology., 5, 1574 (2005)
  11. Ray SS, Okamoto M, Progress in Polymer Science., 28, 1539 (2003)
  12. LeBaron PC, Wang Z, Pinnavaia TJ, Applied Clay Science., 15, 11 (1999)
  13. Choudalakis G, Gotsis AD, European Polymer Journal., 45, 967 (2009)
  14. Osman MA, Mittal V, Morbidelli M, Suter UW, Macromolecules, 37(19), 7250 (2004)
  15. Basara G, Yilmazer U, Bayram G, J. Appl. Polym. Sci., 98(3), 1081 (2005)
  16. McIntyre S, Kaltzakorta I, Liggat JJ, Pethrick RA, Rhoney I, Ind. Eng. Chem. Res., 44(23), 8573 (2005)
  17. Yasmin A, Luo JJ, Abot JL, Daniel IM, Composites Science and Technology., 66, 2415 (2006)
  18. Khanbabaei G, Aalaie J, Rahmatpour A, Khoshniyat A, Gharabadian MA, Journal of Macromolecular Science, Part B., 46, 975 (2007)
  19. Prolongo MG, Martı´nez-Casado FJ, Masegosa RM, Salom C, Journal of Nanoscience and Nanotechnology., 10, 2870 (2010)
  20. Dai CF, Li PR, Yeh JM, European Polymer Journal., 44, 2439 (2008)
  21. Wang L, Wang K, Chen L, Zhang Y, He C, Composites: Part A., 37, 1890 (2006)
  22. Wang K, Chen L, Kotaki M, He C, Composite: Part A., 38, 192 (2007)
  23. Aktas L, Altan MC, Polymer Composites., 31, 620 (2010)
  24. http://www.nanoclay.com/selection_chart.asp (last accessed on 22.01.13).
  25. Tong ZH, Deng YL, Ind. Eng. Chem. Res., 45(8), 2641 (2006)