화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 160-165, January, 2014
Influence of CeO2 morphology on the catalytic oxidation of ethanol in air
E-mail:
Nano-CeO2 catalysts of different shapes were synthesized at different hydrothermal crystallization temperatures from an alkaline aqueous solution. X-ray diffraction (XRD), transmission electron microscope (TEM), and H2 temperature-programmed reduction (H2-TPR) were used to study the synthesized nano-CeO2 catalyst samples. The catalytic properties of the prepared nano-CeO2 catalysts for the catalytic oxidation of ethanol in air were also investigated. TEM analysis showed that CeO2 nanorod and nanocube catalysts have been synthesized at hydrothermal crystallization temperatures of 373 K and 453 K, respectively. XRD results showed that the synthesized nano-CeO2 catalysts have similar cubic fluorite structures. H2-TPR results indicated that CeO2 nanorod and nanocube catalysts exhibit different reduction behaviors for H2 and that the nanorod catalyst has better low-temperature reduction performance than the nanocube catalyst. Ethanol catalytic oxidation results indicated that oxidation and condensation products (including acetaldehyde, acetic acid, CO2, and ethyl acetate) have been produced from the prepared catalysts. The ethyl acetate and acetic acid can be ignited by ethanol at low temperature on the CeO2(R) catalyst to give low catalytic combustion temperature for ethyl acetate and acetic acid molecules. CeO2 nanorods gave ethanol oxidation conversion rates above 99.2% at 443 K and CO2 selectivity exceeding 99.6% at 483 K, while CeO2 nanocubes gave ethanol oxidation conversion rates of about 95.1% until 508 K and CO2 selectivity of only 93.86% at 543 K. CeO2 nanorod is a potential lowcost and effective catalyst for removing trace amounts of ethanol to purify air.
  1. Bialobok B, Trawczynski J, Mista W, Zawadzki M, Appl. Catal. B: Environ., 72(3-4), 395 (2007)
  2. Aguero FN, Scian A, Barbero BP, Cadu LE, Catalysis Today., 133-135, 493 (2008)
  3. Abideen Z, Ansari R, Khan MA, Biomass Bioenerg., 35(5), 1818 (2011)
  4. Sales LCM, Sodre JR, Fuel, 95(1), 122 (2012)
  5. Surisetty VR, Dalai AK, Kozinski J, Appl. Catal. A: Gen., 404(1-2), 1 (2011)
  6. Morales MR, Barbero BP, Cadus LE, Fuel, 87(7), 1177 (2008)
  7. Ribeiro F, Silva JM, Silva E, Vaz MF, Oliveira FAC, Catal. Today, 176(1), 93 (2011)
  8. Mateˇjova´ L, Topka P, Jira´tova´ K, Sˇolcova O, Applied Catalysis A., 443-444, 40 (2012)
  9. Su XW, Jin LY, Lu JQ, Luo MF, J. Ind. Eng. Chem., 15(5), 683 (2009)
  10. Minico S, Scire S, Crisafulli C, Maggiore R, Galvagno S, Appl. Catal. B: Environ., 28(3-4), 245 (2000)
  11. Mitsui T, Tsutsui K, Matsui T, Kikuchi R, Eguchi K, Appl. Catal. B: Environ., 81(1-2), 56 (2008)
  12. Kamiuchi N, Mitsui T, Muroyama H, Matsui T, Kikuchi R, Eguchi K, Appl. Catal. B: Environ., 97(1-2), 120 (2010)
  13. Ludvikova J, Jiratova K, Klempa J, Boehmova V, Obalova L, Catal. Today, 179(1), 164 (2012)
  14. Noordally E, Richmond JR, Tahir SF, Catalysis Today., 17, 359 (1993)
  15. Veranitisagul C, Koonsaeng N, Laosiripojana N, Laobuthee A, J. Ind. Eng. Chem., 18(3), 898 (2012)
  16. Wang LC, Tahvildar Khazaneh M, Widmann D, Behm RJ, Journal of Catalysis., 302, 20 (2013)
  17. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH, J. Phys. Chem. B, 109(51), 24380 (2005)
  18. Qu MY, Master’s Thesis, Zhejiang Sci-Tech University, Zhejiang (2010)
  19. Pan CS, Zhang DS, Shi LY, Fang JH, European Journal of Inorganic Chemistry., 15, 2429 (2008)
  20. Zhou KB, Wang X, Sun XM, Peng Q, Li YD, J. Catal., 229(1), 206 (2005)
  21. Tana, Zhang ML, Li J, Li HJ, Li Y, Shen WJ, Catal. Today, 148(1-2), 179 (2009)
  22. Maensiri S, Masingboon C, Laokul P, Jareonboon W, Promarak V, Anderson PL, Seraphin S, Crystal Growth and Design., 7, 950 (2007)
  23. Singh P, Hegde MS, Journal of Solid State Chemistry., 181, 3248 (2008)
  24. Najjar H, Batis H, Appl. Catal. A: Gen., 383(1-2), 192 (2010)
  25. Ma Y, Ricciuti C, Miller T, Kadlowec J, Pearlman H, Energy Fuels, 22(6), 3695 (2008)
  26. Aguero FN, Barbero BP, Almeida LC, Montes M, Cadus LE, Chem. Eng. J., 166(1), 218 (2011)
  27. Vindigni F, Manzoli M, Tabakova T, Idakiev V, Boccuzzi F, Chiorino A, Applied Catalysis B., 125, 507 (2012)
  28. Tesser R, Maradei V, Di Serio M, Santacesaria E, Ind. Eng. Chem. Res., 43(7), 1623 (2004)
  29. Briois V, Lutzenkirchen-Hecht D, Villain F, Fonda E, Belin S, Griesebock B, Frahm R, J. Phys. Chem. A, 109(2), 320 (2005)
  30. Pacchioni G, ChemPhysChem., 4, 1041 (2003)
  31. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D, Chemistry of Materials., 12, 3715 (2000)