화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 338-344, January, 2014
Modeling of molecular weight distribution of propylene slurry phase polymerization on supported metallocene catalysts
E-mail:
A mathematical model of the molecular weight distribution (MWD) based on a particle growth model and the kinetic scheme is developed to simulate the MWD of the slurry phase propylene polymerization on a silica-supported metallocene catalyst by means of the equations of moments. The model is used to predict molecular weight distribution, including the number-average molecular weight, the weight-average molecular weight, and the polydispersity index. The results show that the mass transfer has great influence on the polymerization reaction, and it can broaden the MWD especially; moreover, the MWD can be evaluated by simulation; the average molecular weight increases as pressure or temperature, and MWD shifts to long chain lengths as the effective diffusion coefficient increasing thought the influence is not remarkable; furthermore, the MWD’s simulation results are calculated, which fit greatly with the experimental data.
  1. Liu Z, Zhang X, Huang H, Yi J, Liu W, Liu W, Zhen H, Huang Q, Gao K, Zhang M, Yang W, J. Ind. Eng. Chem., 18(6), 2217 (2012)
  2. Kaleel SHA, Bahuleyan BK, De SK, Khan MJ, Sougrat R, Al-Harthi MA, J. Ind. Eng. Chem., 18(5), 1836 (2012)
  3. Nele M, Collins S, Dias ML, Pinto JC, Lin S, Waymouth RM, Macromolecules, 33(20), 7249 (2000)
  4. Huang K, Xie RJ, Luo ZH, Acta Petrolei Sinica., 27, 144 (2011)
  5. Luo ZH, Zheng Y, Cao ZK, Wen SH, Polym. Eng. Sci., 47(10), 1643 (2007)
  6. Luo ZH, Huang K, Cao ZK, J. Southeast University., (English edition)., 22, 117 (2006)
  7. Luo ZH, Cao ZK, Su YT, Chin. J. Chem. Eng., 14(2), 194 (2006)
  8. Dube MA, Soares JB, Penlidis A, Hamielec AE, Ind. Eng. Chem. Res., 36(4), 966 (1997)
  9. Begley JW, Journal of Polymer Science: Part A., 4, 319 (1966)
  10. Schmeal WR, Street JR, AIChE Journal., 17, 1188 (1971)
  11. Bo¨hm L, Chemie Ingenieur Technik., (in German)., 56, 674 (1984)
  12. Nagel EJ, Krillov VA, Ray WH, Engineering Chemistry Product Research and Development., 19, 372 (1980)
  13. Bonini F, Fraaije V, Fink G, J. Polym. Sci. A: Polym. Chem., 33(14), 2393 (1995)
  14. Alexiadis A, Andes C, Ferrari D, Korber F, Hauschild K, Bochmann M, Fink G, Macromolecular Materials and Engineering., 289, 457 (2004)
  15. Estenoz DA, Chiovetta MG, J. Appl. Polym. Sci., 81(2), 285 (2001)
  16. McKenna TF, Soares JBP, Chem. Eng. Sci., 56(13), 3931 (2001)
  17. Fan SJ, Xu YM, Journal of the Chinese of Industrial Engineers., (in Chinese)., 51, 771 (2000)
  18. Yiagopoulos A, Yiannoulakis H, Dimos V, Kiparissides C, Chem. Eng. Sci., 56(13), 3979 (2001)
  19. Floyd S, Herskanen T, Taylor TW, Mann GE, Ray WH, Journal of Applied Polymer Science., 33, 1021 (1987)
  20. Hutchinson RA, Chen CM, Ray WH, Journal of Applied Polymer Science., 44, 1389 (1992)
  21. Sarkar P, Gupta SK, Polymer., 32, 2842 (1991)
  22. Sarkar P, Gupta SK, Polymer., 33, 1477 (1992)
  23. Kittilsen P, Svendsen H, McKenna TF, Chem. Eng. Sci., 56(13), 3997 (2001)
  24. Kakugo M, Saadatoshi H, Sakai J, Yokoyama M, Macromolecules., 22, 3172 (1989)
  25. Ferrero MA, Chiovetta MG, Polymer Engineering and Science., 27, 1436 (1987)
  26. Mckenna TF, Dupuy J, Spitz R, J. Appl. Polym. Sci., 63(3), 315 (1997)
  27. Veera UP, Weickert G, Agarwal US, AIChE J., 48(5), 1062 (2002)
  28. Fink G, Steinmetz B, Zechlin J, Przybyla C, Tesche B, Chem. Rev., 100(4), 1377 (2000)
  29. Korber F, Hauschild K, Winter M, Fink G, Macromolecular Chemistry and Physics., 202, 3323 (2001)
  30. Zhao JZ, Sun JZ, Zhou QY, Pan ZR, J. Appl. Polym. Sci., 81(3), 730 (2001)
  31. Zacca JJ, Ray WH, Chemical Engineering Science., 48, 3743 (1993)
  32. Matos V, Neto AGM, Pinto JC, J. Appl. Polym. Sci., 79(11), 2076 (2001)
  33. Zacca JJ, Debling JA, Ray WH, Chem. Eng. Sci., 51(21), 4859 (1996)
  34. Zeng YJ, Zhu FM, Lin SA, Acta Polymerica Sinica., 3, 397 (2006)
  35. Chen ML, Industrial Catalysis., (in Chinese)., 7, 8 (1999)