Polymer(Korea), Vol.38, No.1, 38-42, January, 2014
수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구
Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells
E-mail:
초록
Poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide(WPF-6-oxy-F)]와 graphene oxide(GO)를 혼합하여 WPF-6-oxy-F-GO를 제조한 후 공기 중에서 감마선을 조사하였다. WPF-6-oxy-F-GO 복합재는 유기태양전지(organic solar cells, OSCs)의 정공수송층(hole transporting layer, HTL)으로서 적용하였다. GO와 비교해 보았을 때, 조사된 WPF-6-oxy-F-GO의 면저항(sheet resistance, Rsheet)은 약 2배 정도 감소하였다. 이는 감마선 조사를 통하여 WPF-6-oxy-F와 GO 사이의 C-N 결합의 형성으로 인한 π-π 공유 결합의 영향과 효율적인 packing 때문이다. 결과적으로, 조사된 WPF-6-oxy-F-GO를 정공수송층으로 적용하였을 때 유기태양전지의 효율은 6.10%까지 증가하였다. 수용성 고분자 WPF-6-oxy-F-GO는 정공수송층으로서 사용되고 있는 PEDOT:PSS를 대체하는 대안 소재로서, 높은 효율과 저가의 유기태양전지를 구현할 수 있을 것으로 기대된다.
The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy) ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance (Rsheet) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of Rsheet is the effect of efficient π-π packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.
Keywords:water-soluble conjugated polymer;graphene oxide;organic solar cells;hole-transporting layer.
- Huang JS, Chou CY, Lin CF, Sol. Energy Mater. Sol. Cells, 94(2), 182 (2010)
- Walzer K, Maennig B, Pfeiffer M, Leo K, Chem. Rev., 107(4), 1233 (2007)
- Hsieh CH, Cheng YJ, Li PJ, Chen CH, Dubosc M, Liang RM, Hsu CS, J. Am. Chem. Soc., 132(13), 4887 (2010)
- Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
- Kim Y, Ballantyne AM, Nelson J, Bradley DDC, Org. Electron., 10, 205 (2009)
- Shrotriya V, Li G, Yao YY, Chu CW, Yang Y, Appl. Phys. Lett., 88, 073508 (2006)
- Liao HH, Chen LM, Xu Z, Li G, Yang Y, Appl. Phys. Lett., 92, 173303 (2008)
- Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL, Appl. Phys. Lett., 93, 221107 (2008)
- Tao C, Ruan S, Xie G, Kong X, Shen L, Meng F, Liu C, Zhang X, Dong W, Chen W, Appl. Phys. Lett., 97, 043311 (2009)
- Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes GA, J. Non-Cryst. Solids, 354, 2767 (2008)
- White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS, Appl. Phys. Lett., 89, 143517 (2006)
- Jorgensen M, Norrman K, Krebs FC, Sol. Energy Mater. Sol. Cells, 92(7), 686 (2008)
- Zheng Q, Fang G, Cheng F, Lei H, Quin P, Zhan C, J. Phys. D : Appl. Phys., 46, 135101 (2013)
- Gao Y, Yip HL, Chen KS, O'Malley KM, Acton O, Sun Y, Ting G, Chen HZ, Jen AKY, Adv. Mater., 23(16), 1903 (2011)
- Hong W, Xu Y, Lu G, Li C, Shi G, Electrochem. Commun., 10, 1555 (2008)
- Ali MA, Saion E, Yahya N, Kassim A, Dahlan KM, Hashim S, JESTEC, 2, 111 (2007)
- Koizumi H, Dougauchi H, Yamano T, Ichikawa T, Jpn. J. Appl. Phys., 42, 7122 (2003)
- Oh SH, Na SI, Jo J, Lim B, Vak D, Kim DY, Adv. Mater., 20, 1977 (2010)
- Steim R, Kogler FR, Brabec CJ, J. Mater. Chem., 20, 2499 (2010)
- Yeo JS, Yun JM, Kim DY, Park S, Kim SS, Yoon MH, Kim TW, Na SI, ACS Appl. Mater. Interfacs, 4, 2551 (2010)
- Yip HL, Hau SK, Baek NS, Ma H, Jen AKY, Adv. Mater., 20(12), 2376 (2008)
- Cheun H, Fuentes-Hernandez C, Zhou Y, P-otscavage WJ, Kim SJ, Shim J, Dindar A, Kip-pelen B, J. Phys. Chem. C, 114, 20713 (2010)
- Jung ST, Oh SH, Kim HB, Jeun JP, Lee BJ, Kang PH, J. Nanosci. Nanotechnol., 13, 7358 (2013)
- Na SI, Wang G, Kim SS, Kim TW, Oh SH, Yu BK, Lee T, Kim DY, J. Mater. Chem., 19, 9045 (2009)