Polymer(Korea), Vol.38, No.1, 54-61, January, 2014
설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질
Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties
E-mail:
초록
Bombyx mori silk fibroin(SF)과 블렌드 필름을 만들기 위하여 키토산에 1,3-propanesultone을 반응시켜 수용성 sulfobetaine chitosan(SCs)을 제조하였다. 여러 가지 비율의 SF/SCs 블렌드 필름을 B. mori SF와 SCs의 수용액을 혼합하여 제조하였다. 수용액으로부터 얻어진 SF/SCs 블렌드 필름의 구조와 형태 변화는 분광학적 및 열적 분석을 통해 규명하였다. SF와 SCs의 혼합 비율에 따른 인공 피부나 화상치료 목적의 비이오재료로서의 물리적 및 기계적 성질에 미치는 영향을 조사하였다. X-선 분석으로 두 생체고분자 사이에 좋은 친화성을 보여주고 있음을 알 수 있었으며 기계적 성질도 SCs의 함량이 증가하면 크게 증가하였다. 37 ℃에서 phosphate buffered saline solution 용액 중에서 in vitro 분해 실험을 8주 동안 시행한 결과 46.4%가 분해됨을 알 수 있었다. MC3T3-E1 세포에 의한 독성 실험 결과 무독성을 나타내 주었으며, 3일의 배양 후 SF/SCs 필름의 상대 세포 수는 최적화된 tissue culture plastic보다 약간 낮게 나타남을 알 수 있었다.
Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical
and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at 37 ℃ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.
- Lv Q, Feng QL, J. Mater. Sci. Mater. Med., 17, 1349 (2006)
- Lu GY, Kong LJ, Sheng BY, Wang G, Gong YD, Zhang F, Eur. Polym. J., 43, 3807 (2007)
- Kweon H, Ha HC, Um IC, Park YH, J. Appl. Polym. Sci., 80(7), 928 (2001)
- Chen X, Li WJ, Yu TY, J. Polym. Sci. B: Polym. Phys., 35(14), 2293 (1997)
- Park SJ, Lee KY, Ha WS, Park SY, J. Appl. Polym. Sci., 74(11), 2571 (1999)
- Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL, Biomaterials, 24, 401 (2003)
- Cao Y, Wang BC, Int. J. Mol. Sci., 10(4), 1514 (2009)
- Dal Pra I, Chiarini A, Boschi A, Freddi G, Armato U, Inter. J. Mol. Sci., 18, 241 (2006)
- Liu TL, Miao JC, Sheng WH, Xie YF, Huang Q, Shan YB, Yang JC, J. Zhejiang University B, 11, 10 (2010)
- Kweon HY, Um IC, Park YH, Polymer, 42(15), 6651 (2001)
- Lones GL, Motta A, Marshall MJ, El Haj AJ, Cartmell SH, Biomaterials, 30, 5376 (2009)
- Kawahara Y, J. Seric. Sci. Jpn., 62, 272 (1993)
- Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y, Biochem. Biophys. Res. Commun., 208, 511 (1995)
- Teng WL, Khor E, Tan TK, Lim LY, Tan SC, Carbohyd. Res., 332, 305 (2001)
- Jayakumar R, Nwe N, Tokura S, Tamura H, Int. J. Biol. Macromol., 40, 175 (2007)
- Jayakumar R, Prabaharan M, Reis RL, Mano JF, Carbohyd. Polym., 62, 142 (2005)
- Jayakumar R, Reis RL, Mano JF, J. Bioact. Compat. Polym., 21, 327 (2006)
- Kondo K, Nakagawa S, Matsumoto M, Yamashita T, Furukawa I, J. Chem. Eng. Jpn., 20, 846 (1997)
- Tsai HS, Wang YZ, Lin JJ, Lien WF, J. Appl. Polym. Sci., 116(3), 1686 (2010)
- Kweon HY, Park YH, J. Appl. Polym. Sci., 73(14), 2887 (1999)
- Freddi G, Monti P, Nagura M, Gotoh Y, Tsukada M, J. Polym. Sci. B: Polym. Phys., 35(5), 841 (1997)
- Nieto JM, Peniche-Covas C, Padron G, Thermochim. Acta, 176, 63 (1991)
- Geoghegan M, Krausch G, Prog. Polym. Sci., 28, 261 (2003)
- She Z, Zhang B, Jin C, Feng Q, Xu Y, Polym. Degrad. Stabil., 93, 1316 (2008)