화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 80-84, January, 2014
가교된 PS 코어와 PBA 및 PS 셸로 이루어진 코어-더블셸형 나노입자의 압력가소성
Baroplastic Properties of Core-double Shell Type Nanoparticles Consisting of Crosslinked PS as a Core and PBA and PS as Shells
E-mail:
초록
가교결합된 코어와 PBA, PS 더블-셸을 갖는 고분자 나노입자를 제조하고 압력가소 특성을 평가하였다. 더블-셸을 합성하기 위해 먼저, 가교된 코어입자를 St, DVB의 에멀션 중합을 통해서 제조하였으며, 이어서 PBA가 내부셸, PS가 외부셸을 형성하도록 3 단계의 연속적인 에멀션 중합을 수행하였다. 제조된 더블-셸 나노입자는 가교된 코어의 존재에도 불구하고 PBA, PS 간 압력상용성을 발견할 수 있었으며, 25 ℃에서 반투명한 시편으로 압출성형될 수 있었다. 기계적 물성측정 결과, 성형물의 탄성계수는 더블-셸 나노입자의 크기에 직접적으로 연관됨을 알 수 있었다. 또한 PBA가 과량으로 첨가된 시편의 경우, 25 ℃에서 재가공이 성공적으로 진행되어 5회의 연속된 압출성형에도 불구하고 0.55MPa의 탄성계수와 1.81 MPa의 파단강도를 얻을 수 있었다.
Polymer nanoparticles with cross-linked core and PBA/PS double-shell were synthesized and their baroplastic properties were characterized. PBA/PS, the inner and outer shell with cross-linked core consisting of St and DVB were synthesized by three-stage emulsion polymerization. The obtained materials exhibited pressure-induced mixing of their components and could be processed at 25 ℃ by compression molding which means there was no effect of the presence of cross-linked core. Interestingly, the Young’s modulus of molded objects has found to be affected strongly by the size of double-shell nanoparticles. Furthermore, the molded object of higher PBA content was successfully recycled 5 times at 25 ℃ and showed 0.55 MPa of modulus and 1.81 MPa of strength at break.
  1. Odian J, Principles of Polymerization, John Wiley & Sons, New York (1991)
  2. Dimonie VL, Daniels ES, Shaffer OL, El-Aasser MS, Emulsion Polymerization and Emulsion Polymers, Lowell PA, El-Aasser MS, Editors, Wiley, New York (1997)
  3. Kalinina O, Kumacheva E, Macromolecules, 34(18), 6380 (2001)
  4. Keskkula H, Paul DR, “Toughening Agents for Engineering Polymers,” in Rubber Toughened Engineering Plastics, Collier AA, Editor, Springer, Netherlands, Chapter 5, p 136 (1994)
  5. Landfester K, Boeffel C, Lambla M, Spiess HW, Macromolecules, 29(18), 5972 (1996)
  6. Zhao YQ, Urban MW, Macromolecules, 33(22), 8426 (2000)
  7. Gonzalez-Leon JA, Ryu SW, Hewlett SA, Ibrahim SH, Mayes AM, Macromolecules, 38(19), 8036 (2005)
  8. Kim MJ, Choi YD, Ryu SW, Polym.(Korea), 32(6), 573 (2008)
  9. Hajduk DA, Urayama P, Gruner SM, Erramilli S, Register RA, Brister K, Fetters LJ, Macromolecules, 28(21), 7148 (1995)
  10. Pollard M, Russell TP, Ruzette AV, Mayes AM, Gallot Y, Macromolecules, 31(19), 6493 (1998)
  11. Ruzette AVG, Banerjee P, Mayes AM, Russell TP, J. Chem. Phys., 114(18), 8205 (2001)
  12. Ryu DY, Lee DJ, Kim JK, Lavery KA, Russell TP, Han YS, Lee CH, Thiyagarajan P, Phys. Rev. Lett., 90, 235501 (2003)
  13. Cho JH, Wang ZG, Macromolecules, 39(13), 4576 (2006)
  14. Cho J, Shin K, Cho KS, Seo YS, Satija SK, Ryu DY, Kim JK, Macromolecules, 41(3), 955 (2008)
  15. Gonzales-Leon JA, Acar MH, Ryu SW, Ruzette AV, Mayes AM, Nature(London), 426, 424 (2003)
  16. Lee KH, Ryu SW, Macromol. Res., 20(12), 1294 (2012)