화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.1, 74-78, January, 2014
Biodegradable blends of stereocomplex polylactide and lignin by supercritical carbon dioxide-solvent system
E-mail:
The development of biomaterials by utilizing natural resources attracted great interest due to environmental reasons. Lignin as part of biomass can be used as filler in polymer blending. The combination of stereocomplex polylactide and lignin was successfully generated through a supercritical carbon dioxide ? solvent system. The solvation power of organic solvent to the polylactide and lignin is the key factor to obtain homogeneous blends. The supercritical carbon dioxide ? tetrahydrofuran is the best system to generate stereocomplex polylactide ? lignin blends. The thermal degradation property of polylactide based materials was improved by combining stereocomplex polylactide and lignin providing the simultaneous effects from the stereocomplex crystallites structure and the formation of char residue of lignin. The combination of fully bio-based materials is a promising candidate to replace non-degradable materials in the future.
  1. Green E, Short SD, Stutt E, Harrison PTC, Sci. Total Environ., 256, 205 (2000)
  2. Imam SH, Greene RV, Zaidi BR, Biopolymers: Utilizing Nature’s Advanced Materials, American Chemical Society, Washington, DC, 1999.
  3. Zhong ZY, Dijkstra PJ, Feijen J, J. Am. Chem. Soc., 125(37), 11291 (2003)
  4. Gupta AP, Kumar V, Eur. Polym. J., 43, 4053 (2007)
  5. Auras R, Harte B, Selke S, Macromol. Biosci., 4, 835 (2004)
  6. Li J, He Y, Inoue Y, Polym. Int., 52, 949 (2003)
  7. Ouyang W, Huang Y, Luo H, Wang D, J. Polym. Environ., 20, 1 (2012)
  8. Corradini E, Pineda EAg, Hechenleitner AAW, Polym. Degrad. Stabil., 66, 199 (1999)
  9. Teramoto Y, Lee SH, Endo T, Polym. J., 41, 219 (2009)
  10. Ikada Y, Jamshidi K, Tsuji H, Hyon SH, Macromolecules, 20, 904 (1987)
  11. Tsuji H, Macromol. Biosci., 5, 569 (2005)
  12. Tsuji H, Ikada Y, Macromolecules, 26, 6918 (1993)
  13. Yamane H, Sasai K, Polymer, 44(8), 2569 (2003)
  14. Fukushima K, Chang YH, Kimura Y, Macromol. Biosci., 7, 829 (2007)
  15. Tsuji H, Ikada Y, Macromolecules, 25, 5719 (1992)
  16. Anderson KS, Hillmyer MA, Polymer, 47(6), 2030 (2006)
  17. Purnama P, Kim SH, Macromolecules, 43(2), 1137 (2010)
  18. Purnama P, Kim SH, Polym. Int., 61, 939 (2012)
  19. Purnama P, Jung Y, Kim SH, Macromolecules, 45(9), 4012 (2012)
  20. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
  21. Messersmith PB, Giannelis EP, J. Polym. Sci. A: Polym. Chem., 33(7), 1047 (1995)
  22. Brown JM, Curliss D, Vaia RA, Chem. Mater., 12, 3376 (2000)
  23. Purnama P, Lim SH, Jung Y, Kim SH, Macromol. Res., 20(6), 545 (2012)
  24. Purnama P, Jung Y, Kim SH, Macromol. Mater. Eng., 298, 263 (2013)
  25. Sun Y, He C, ACS Macro Lett., 1, 709 (2012)
  26. Agrawal A, Saran AD, Rath SS, Khanna A, Polymer, 45(25), 8603 (2004)
  27. Hansen CM, in Hansen Solubility Parameters - a User’s Handbook, CRC Press, Florida, 2000, pp 168-195.
  28. Fan Y, Nishida H, Shirai Y, Tokiwa Y, Endo T, Polym. Degrad. Stabil., 86, 197 (2004)
  29. Canetti M, Bertini F, De Chirico A, Audisio G, Polym. Degrad. Stabil., 91, 494 (2006)