화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.1, 85-91, January, 2014
A novel conducting amphiphilic diblock copolymer containing regioregular poly (3-hexylthiophene)
E-mail:,
Amphiphilic rod-coil diblock copolymers combining the conductive features of a conjugated polymer and nanoscale morphologies arising from micro-phase separation of dissimilar blocks are attractive as potential materials for electronic applications. The synthesis and properties are reported for a novel amphiphilic diblock copolymer containing a block of regioregular poly(3-hexylthiophene) (P3HT) and poly(methyl methacrylate-random-2-hydroxyethyl methacrylate) (P(MMA-r-HEMA)) as the hydrophilic block. Well-defined rod-coil P3HT-b-P(MMA-r-HEMA) amphiphilic diblock copolymers with molar masses of around 11,000 and low molar mass dispersities (đ M ) below 1.5 were successfully synthesized via the combination of quasi-living Grignard metathesis (GRIM) polymerization and atom transfer radical polymerization (ATRP). P3HT was first obtained in a regioregular form with an average molecular weight of around 7,200 g/mol and đ M below 1.3. Post-polymerization end-group modifications of the asobtained P3HT were then successfully realized to give a macroinitiator for the ATRP of MMA and HEMA co-monomers, resulting in the P3HT-b-P(MMA-r-HEMA) diblock copolymers. The structure and properties of the resulting diblock copolymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy and modulated differential scanning calorimetry (MDSC).
  1. McCullough RD, Ewbank PC, in Handbook of Conducting Polymers, 2nd ed., Skotheim TA, Elsenbaumer RL, Reynolds JR, Eds., Marcel Dekker, New York, 1998, p 225.
  2. McCullough RD, Adv. Mater., 10(2), 93 (1998)
  3. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ, Science, 317, 222 (2007)
  4. Thompson BC, Frechet JM, Angew. Chem.-Int. Edit., 47, 58 (2008)
  5. Wei Q, Nishizawa T, Tajima K, Hashimoto K, Adv. Mater., 20, 1 (2008)
  6. Wang G, Swensen J, Moses D, Heeger AJ, J. Appl. Phys., 93, 6137 (2003)
  7. Bao Z, Locklin J, Organic Field-Effect Transistors, CRC Press, Taylor & Francis, 2007.
  8. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha CS, Ree M, Nat. Mater., 5(3), 197 (2006)
  9. Bates FS, Science, 251, 898 (1991)
  10. Iovu MC, Craley CR, Jeffries-EL M, Krankowski AB, Zhang R, Kowalewski T, McCullough RD, Macromolecules, 40(14), 4733 (2007)
  11. Iovu MC, Jeffries-El M, Sheina EE, Cooper JR, McCullough RD, Polymer, 46(19), 8582 (2005)
  12. Iovu MC, Zhang R, Cooper JR, Smilgies DM, Javier AE, Sheina EE, Kowalewski T, McCullough RD, Macromol. Rapid Commun., 28(17), 1816 (2007)
  13. Lee M, Cho BK, Zin WC, Chem. Rev., 101(12), 3869 (2001)
  14. Jenekhe SA, Chen XL, Science, 283(5400), 372 (1999)
  15. Jenekhe SA, Chen XL, J. Phys. Chem. B, 104(27), 6332 (2000)
  16. Olsen BD, Segalman RA, Macromolecules, 38(24), 10127 (2005)
  17. Olsen BD, Segalman RA, Macromolecules, 39(20), 7078 (2006)
  18. Olsen BD, Li XF, Wang J, Segalman RA, Macromolecules, 40(9), 3287 (2007)
  19. Higashihara T, Ohshimizu K, Ryo Y, Sakurai T, Takahashi A, Nojima S, Ree M, Ued M, Polymer, 52(17), 3687 (2011)
  20. Craley CR, Zhang R, Kowalewski T, McCullough RD, Stefan MC, Macromol. Rapid Commun., 30(1), 11 (2009)