Macromolecular Research, Vol.22, No.1, 99-107, January, 2014
Effect of heterogeneous multi-layered gelatin scaffolds on the diffusion characteristics and cellular activities of preosteoblasts
E-mail:
In vitro bone tissue development requires mimicking the in vivo bone environment, as well as a suitable combination of cells and scaffold for optimal results. We developed heterogeneous multilayered gelatin scaffolds with diverse compositions of porous structures by using a stacking procedure in which each layer had a different pore size depending on the gelatin concentration used. We then used these gelatin scaffolds to investigate the in vitro effect of varying porous structural compositions on the diffusion characteristics and cellular activity of MC3T3-E1 cells. We have shown that multilayered scaffolds with a larger pore size on the outer layers exhibited enhanced diffusion characteristics such as the diffusion coefficient compared to other scaffolds, including single-layered scaffolds with single pore size and multilayered scaffolds with a smaller pore size on the outer layers. Moreover, multilayered scaffolds with a larger pore size on the outer layers promoted cell adhesion, proliferation, and differentiation of MC3T3-E1 preosteoblast cells by providing a favorable environment for the cells within the tissue-engineered scaffold.
Keywords:heterogeneous;multi-layered gelatin scaffolds;diffusion characteristics;MC3T3-E1;tissue-engineering scaffolds
- Drury JL, Mooney DJ, Biomaterials, 24, 4337 (2003)
- Langer R, Vacanti JP, Science, 260, 920 (1993)
- Oh SH, Kim TH, Im GI, Lee JH, Biomacromolecules, 11(8), 1948 (2010)
- Crane GM, Ishaug SL, Mikos AG, Nat. Med., 1, 1322 (1995)
- Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG, Biomaterials, 17, 175 (1996)
- Ding J, He R, Zhou G, Tang C, Yin C, Acta Biomater., 8, 3643 (2012)
- Badylak SF, Semin. Cell Dev. Biol., 13, 377 (2002)
- Kang HG, Kim SY, Lee YM, J. Biomed. Mater. Res., 79, 388 (2006)
- Ahn G, Park JH, Kang T, Lee JW, Kang HW, Cho DW, J. Biomech. Eng. -Trans. ASME, 132, 104506 (2010)
- Liu Y, Chan-Park MB, Biomaterials, 30, 196 (2009)
- Saraydin D, Karadag E, Isikver Y, Sahiner N, Guven O, J. Macromol. Sci.-Pure Appl. Chem., A41, 419 (2004)
- Mathur AM, Moorjani SK, Scranton AB, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C36, 405 (1996)
- Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL, Acta Biomater., 7, 1009 (2011)
- Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG, Proc. Natl. Acad. Sci. U.S.A., 99, 12600 (2002)
- Botchwey EA, Pollack SR, Levine EM, Laurencin CT, J. Biomed. Mater. Res., 55, 242 (2001)
- Glowacki J, Mizuno S, Greenberger JS, Cell Transplant., 7, 319 (1998)
- Karande TS, Ong JL, Agrawal CM, Ann. Biomed. Eng., 32, 1728 (2004)
- Malda J, Klein TJ, Upton Z, Tissue Eng., 13, 2153 (2007)
- Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ, Biomaterials, 24, 181 (2003)
- Stringer JL, Peppas NA, J. Control. Release, 42, 195 (1996)
- Ratanavaraporn J, Damrongsakkul S, Kanokpanont S, Yamamoto M, Tabata Y, J. Biomater. Sci.-Polym. Ed., 22, 1083 (2011)
- Rao KSVK, Ha CS, Polym. Bull., 62(2), 167 (2009)
- Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J, Acta Biomater., 6, 1167 (2010)
- Habraken WJ, Wolke JG, Mikos AG, Jansen JA, J. Biomed. Mater. Res. B: Appl. Biomater., 91, 555 (2009)
- Malda J, Rouwkema J, Martens DE, le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J, Biotechnol. Bioeng., 86(1), 9 (2004)
- Dunn JC, Chan WY, Cristini V, Kim JS, Lowengrub J, Singh S, Wu BM, Tissue Eng., 12, 705 (2006)