화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.1, 107-112, February, 2014
과산화수소 정량을 위한 장미조직 함유 바이오센서의 전기화학 속도론적 고찰
Electrochemical Kinetic Assessment of Rose Tissue Immobilized Biosensor for the Determination of Hydrogen Peroxide
E-mail:
초록
흑연가루의 결합재로 클로로술폰화 폴리에틸렌 고무용액을, 매개체로 ferrocene을 사용하여 장미조직을 고정한 과산화수소 정량 바이오센서를 제작하였다. 실험 전극전위 영역에서 보여준 Hanes-Woolf 도시의 선형성은 기질의 환원이장미 과산화효소의 촉매력에 의한 것임을 보여 주었다. 또 얻어진 10개 이상의 전기화학 파라미터들은 전극이 정량적으로 성능을 발휘하고 있음을 입증하였다. 이런 사실들은 효소전극의 실용화를 위하여 장미조직이 상업용 과산화효소를 대치하여 사용될 수 있음을 확신시켜 주는 것이었다.
Using a chlorosulphonated polyethylene rubber solution for a binder of graphite powder and ferrocene for a mediator, a rose leaf tissue-embedded biosensor was built. Linearity on the Hanes-Woolf plot showed the reduction of the substrate was attained through the catalytic power of the rose peroxidase in the experimental range of electrode potential. Furthermore, 10 or more electrochemical parameters demonstrated that the electrode exerts its sensing ability quantitatively. The foregoing gave the full conviction that rose tissue can be used in place of the currently marketed enzyme for the practical use of enzyme electrode.
  1. Sax I, Hawley’s Condensed Chemical Dictionary, 168, Van Nostrand Reinhold, NY, USA (1987)
  2. Wang J, Ye H, Jiang Z, Huang J, Anal. Chim. Acta., 508, 171 (2004)
  3. Tang B, Wang Y, Spectrochim. Acta, Part A., 59, 2867 (2003)
  4. Svensson S, Olin AC, Larstad M, Ljungkvist G, Toren K, J. Chromatogr.B., 809, 199 (2004)
  5. Casero E, Darder M, Pariente F, Lorenzo E, Anal. Chim. Acta., 403, 1 (2000)
  6. de Oliveira IRWZ, Vieira IC, Enzyme Microb. Technol., 38(3-4), 449 (2006)
  7. Tingry S, Innocent C, Touli S, Deratani A, Seta P, Mater. Sci. Eng. C., 26, 222 (2006)
  8. Wang J, Mo JW, Li SF, Porter J, Anal. Chim. Acta., 441, 183 (2001)
  9. Crouch E, Cowell DC, Hoskins S, Pitsson RW, Hart JP, Anal. Biochem., 347, 17 (2005)
  10. Tian FM, Xu B, Zhu LD, Zhu GY, Anal. Chim. Acta., 443, 9 (2001)
  11. Gaspar S, Habermuller K, Csoregi E, Schuhmann W, Sens. Actuators B., 72, 63 (2001)
  12. Cheng TJ, Lin TM, Chang HC, Anal. Chim. Acta., 462, 261 (2002)
  13. Wang JJ, Lin MS, Electroanalysis., 1, 43 (1989)
  14. Horie H, Rechnitz GA, Anal. Chim. Acta., 306, 123 (1995)
  15. Kwon HS, Park IK, Yoon KJ, Seo ML, J. Kor. Chem. Soc., 44, 376 (2000)
  16. Lee BG, Yoon KJ, Kwon HS, Anal. Sci. Tech., 13, 315 (2000)
  17. Yoon KJ, J. Kor.Chem. Soc., 48, 654 (2004)
  18. Kwon HS, Jin EH, Yoon KJ, Pak YN, J. Kor.Chem. Soc., 49, 224 (2005)
  19. Lee BG, Park SW, Yoon KJ, Anal. Sci. Tech., 19, 58 (2006)
  20. Kwon HS, Kim HJ, Yoon KJ, Pak YN, J. Kor.Chem. Soc., 51, 291 (2007)
  21. Yoon KJ, Pyun SY, Kwon HS, J. Kor. Chem. Soc., 41, 343 (1997)
  22. Yoon KJ, Bull.Kor. Chem. Soc., 31, 2913 (2010)
  23. Dho HS, Yoon KJ, J. Ind. Eng. Chem., 17(2), 254 (2011)
  24. Brydson JA, Rubbery materials and their compounds, 291, Elsevier Applied Science, London and New York (1998)
  25. Mansouri A, Makris DP, Keflas P, J. Pham. Biomed. Anal., 39, 22 (2005)
  26. Nogueria RFP, Oliveira MC, Paterlini WC, Talanta., 66, 86 (2005)
  27. Graft E, Mahoney JR, Bryant RG, Eaton JW, J. Biol. Chem., 259, 3620 (1984)
  28. Henle ES, Linn S, J. Biol. Chem., 272, 19095 (1997)
  29. Yoon KJ, Bull. Kor. Chem. Soc., 25, 997 (2004)
  30. Yoon KJ, J. Kor. Chem. Soc., 52, 197 (2008)
  31. Diaz AN, Peinado MCR, Minguez MCT, Anal. Chim. Acta., 363, 221 (1998)
  32. Yang YH, Yang MH, Wang H, Tang L, Shen GL, Yu RQ, Anal.Chim. Acta., 509, 151 (2004)
  33. Chen X, Zhang JZ, Wang BQ, Cheng GJ, Dong SJ, Anal. Chim. Acta., 434, 255 (2001)