화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.3, 496-502, March, 2014
Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
E-mail:
Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neurofuzzy models from local minima trapping, which might occur through back-propagation algorithm.
  1. Danesh A, PVT and phase behavior of petroleum reservoir fluids, First Ed., Elsevier Science B.V., Amsterdam, Netherlands (1998)
  2. Standing MB, SPE 47-275 (1947)
  3. Lasater JA, Trans AIME, 213, 379 (1958)
  4. Glaso O, J. Pet. Technol., 32(5), 785 (1980)
  5. Al-Marhoun MA, J. Pet. Technol., 40(5), 650 (1988)
  6. Petrosky GE, Farshad FF, SPE 26644 (1993)
  7. Dindoruk B, Christman PG, SPE 71633 (2003)
  8. McCain WD, SPE Reservoir Eng., 6(2), 266 (1991)
  9. Velarde J, Blasingame TA, McCain WD, J. Can. Pet. Technol., 38(13), 62 (1999)
  10. Al-Shammasi AA, SPE 53185 (1999)
  11. Asoodeh M, Bagheripour P, Rock Mech. Rock Eng., 45, 45 (2012)
  12. Asoodeh M, Bagheripour P, J. Pet. Sci. Eng., 90-91, 1 (2012)
  13. Mohaghegh S, J. Pet. Technol., 52(9), 64 (2000)
  14. Asoodeh M, Pet. Sci. Technol., 31-9 (2013), DOI:10.1080/10916466.2010.545783.
  15. Asoodeh M, Kazemi K, Energy Sources, Part A, 35-12 (2013), DOI:10.1080/15567036.2011.574195.
  16. Gharbi RB, Adel M, SPE 38099 (1997)
  17. Al-Marhoun MA, Osman EA, SPE 78592 (2002)
  18. Goda HM, EI-M Shokir EM, Fattah KA, Sayyouh MH, SPE 85650 (2003)
  19. Dutta S, Gupta JP, J. Pet. Sci. Eng., (72), 93 (2010)
  20. Khoukhi A, Albukhitan S, International Journal of Oil, Gas and Coal Technol., 4(1), 47 (2011)
  21. Khoukhi A, Comput. Geosci., 44, 109 (2012)
  22. Numbere OG, Azuibuike II, Ikiensikimama SS, Nigeria Annual International Conference and Exhibition, Lagos, Nigeria (2013)
  23. Asoodeh M, Bagheripour P, Int. J. Comput. Appl., 63(5), 11 (2013)
  24. Zadeh LA, Inf. Control., 8(3), 338 (1965)
  25. Fuzzy logic, Neural Network & GA and Direct Search Toolboxes, MATLAB User’s Guide (2010)
  26. Takagi T, Sugeno M, IEEE. Trans. Syst. Man. Cybern., 15(1), 116 (1985)
  27. Bhatt A, Helle HB, Geophys. Prospect., 50, 645 (2002)
  28. Holland JH, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, USA (1985)
  29. Ostermann RD, Ehlig-Economides CA, Owalabi OO, SPE 11703 (1983)
  30. Dolka M, Osman M, SPE 21342 (1991)
  31. Omar MI, Todd AC, SPE 25338-MS (1993)
  32. Giambattista DG, Villa M, SPE 28904 (1994)
  33. Kadkhodaie-Illkchi A, Rezaee MR, Rahimpour-Bonab H, Chehrazi A, Comput. Geosci., 36, 2314 (2009)
  34. Mamdani EH, International Journal of Man-Machine Studies, 7, 1 (1975)
  35. Mamdani EH, IEEE Transactions on Computers, 26, 1182 (1976)
  36. Larsen PM, International Journal of Man-Machine Studies, 12, 3 (1980)
  37. Jarrah OA, Halawani A, Artif. Intell., 133, 117 (2001)
  38. Chiu S, J. Intell. Fuzzy Syst., 2, 267 (1994)
  39. Chen MS, Wang SW, Fuzzy Sets and Systems, 103, 239 (1994)