화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.6, 1036-1042, June, 2014
Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii
E-mail:
Microalgae-derived biomass has been considered as the most promising candidate for next generation biofuel due to its sustainability and biodegradability. In this study, microalgal strain Chlamydmonas reinhardtii was randomly mutagenized by using a chemical mutagen, ethyl methane sulfonate (EMS) to create mutants showing enhanced lipid production. We identified three random mutants that displayed high lipid production in the screening using Nile red staining. Among those, mutant #128 was selected as candidate for further studies. Our flow cytometry and confocal microscopy analysis revealed that mutant #128 contains larger and more abundant lipid bodies than that of wild-type. Moreover, mutant #128 showed 1.4-fold increased fatty acid methyl ester (FAME) content compared to wild-type under nitrogen depleted condition. In addition, mutant #128 grew faster and accumulated more biomass, resulting in high lipid production. 2D gel electrophoresis and MALDI-TOF analysis used for gene targeting revealed that β-subunit of mitochondrial ATP Synthase and two-component response regulator PilR may be involved in enhanced characteristics of mutant #128. These results show the possibilities of EMS mediated random mutagenesis in generation of mutants to produce high amount of lipid as well as further study for molecular mechanism of mutants.
  1. McKendry P, Bioresour. Technol., 83(1), 37 (2002)
  2. Nigam PS, Singh A, Prog. Energy Combust. Sci., 37, 52 (2011)
  3. Mata TM, Martins AA, Caetano NS, Renewable Sustainable Energy Rev., 14, 217 (2010)
  4. Chisti Y, Biotechnol. Adv., 25, 294 (2007)
  5. Minowa T, Yokoyama S, Kishimoto M, Okakura T, Fuel, 74, 1735 (1995)
  6. Ahmad A, Yasin N, Derek C, Lim J, Renewable Sustainable Energy Rev., 15, 584 (2011)
  7. Pienkos PT, Darzins A, Biofuels, Bioprod. Biorefin., 3, 431 (2009)
  8. Amaro HM, Guedes AC, Malcata FX, Appl. Energy, 88(10), 3402 (2011)
  9. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J, Biotechnol. Biofuels, 5, 1 (2012)
  10. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC, Nat. Commun., 3, 686 (2012)
  11. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Science, 318, 245 (2007)
  12. Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Science, 324, 268 (2009)
  13. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M, Planta, 229, 873 (2009)
  14. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC, Eukaryotic Cell, 9, 486 (2010)
  15. Goodenough UW, Cell, 70, 533 (1992)
  16. Harris EH, Annu. Rev. Plant Biol., 52, 363 (2001)
  17. Zorin B, Lu Y, Sizova I, Hegemann P, Gene, 432, 91 (2009)
  18. Beer LL, Boyd ES, Peters JW, Posewitz MC, Curr. Opin. Biotechnol., 20, 264 (2009)
  19. Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R, J. Biosci. Bioeng., 105(4), 403 (2008)
  20. Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA, Biotechnol. Bioeng., 107(2), 258 (2010)
  21. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC, Eukaryotic Cell, 9, 1251 (2010)
  22. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR, Appl. Biochem. Biotechnol., 157(3), 507 (2009)
  23. Kim YH, Park HJ, Lee SH, Lee JH, Korean J. Chem. Eng., 30(2), 413 (2013)
  24. Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q, Appl. Energy, 96, 371 (2012)
  25. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q, J. Microbiol. Methods, 77, 41 (2009)
  26. Bradford MM, Anal. Biochem., 72, 248 (1976)
  27. Shevchenko A, Shevchenko A, Anal. Biochem., 296, 279 (2001)
  28. Li YQ, Horsman M, Wang B, Wu N, Lan CQ, Appl. Microbiol. Biotechnol., 81(4), 629 (2008)
  29. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U, Eukaryotic Cell, 8, 1856 (2009)
  30. Govender T, Ramanna L, Rawat I, Bux F, Bioresour. Technol., 114, 507 (2012)
  31. Cooper MS, Hardin WR, Petersen TW, Cattolico RA, J. Biosci. Bioeng., 109(2), 198 (2010)
  32. Sager R, Granick S, J. Gen. Physiol., 37, 729 (1954)
  33. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ, Nature, 458, 1131 (2009)
  34. Sharma KK, Schuhmann H, Schenk PM, Energies, 5, 1532 (2012)
  35. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 54, 621 (2008)
  36. Leonardi PI, Popovich CA, Damiani MC, Econ. Eff. Biofuels. Prod. (2011)
  37. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M, Chem. Eng. Process., 48(6), 1146 (2009)
  38. James GO, Hocart CH, Hillier W, Chen HC, Kordbacheh F, Price GD, Djordjevic MA, Bioresour. Technol., 102(3), 3343 (2011)
  39. Majeran W, Olive J, Drapier D, Vallon O, Wollman FA, Plant Physiol., 126, 421 (2001)
  40. Ishimoto KS, Lory S, J. Bacteriol., 174, 3514 (1992)
  41. Ota IM, Lory S, Science, 262, 566 (1993)
  42. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM, Science, 262, 539 (1993)
  43. Schaller GE, Shiu SH, Armitage JP, Curr. Biol., 21, R320 (2011)