화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.6, 1049-1056, June, 2014
Extraction separation of toluene/cyclohexane with hollow fiber supported ionic liquid membrane
E-mail:
A supported liquid membrane with ionic liquid was used for the separation of toluene/cyclohexane. The interactions of ionic liquid with toluene and cyclohexane were calculated and experimentally studied by quantum chemical calculation and liquid-liquid extraction process. The results showed [BPy][BF4] have stronger interaction with toluene than that with cyclohexane. The selectivity of SILM processes was larger than 10 at the temperature of 323 K and the flow rate of 13.5 mL·min.1 on both shell side and lumen side. Due to the higher viscosity of IL, SILM process had good long-term stability. As the effects of mass transfer driving force of SILM process, the flux and removal efficiency increased with increase of initial toluene concentration, while the selectivity decreased because of the competitive transport. Base on the resistance in-series model and experimental results, the mass transfer resistance was mainly lay liquid membrane phase. The influence of flow rates on both sides was slight. The higher temperature could enhance the mass transfer performance significantly. The removal efficiency increased from 28.2% to 45.1% with the increasing of operation temperature from 298 K to 323 K.
  1. Razdan U, Joshi SV, Shah V, J. Curr. Sci., 85, 761 (2003)
  2. Gaile AA, Zalishchevskii GD, Gafur NN, Semenov LV, Varshavskii OM, Fedyanin NP, Koldobskaya LL, Chem. Tech. Fuels Oils, 40(4), 215 (2004)
  3. Welton T, Chem. Rev., 99(8), 2071 (1999)
  4. Branco LC, Crespo JG, Afonso CA, Chem. Eur. J., 8, 3865 (2002)
  5. McFarlane J, Ridenour WB, Luo H, Hunt RD, DePaoli DW, Ren RX, Sep. Sci. Technol., 40(6), 1245 (2005)
  6. E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, R. E. Morris, Nature, 430, 1012 (2004)
  7. Sheldon R, Chem. Commun., 23, 2399 (2001)
  8. Weingartner H, Angew. Chem. Int. Ed. Eng., 47, 654 (2008)
  9. Malik MA, Hashim MA, Nabi F, Chem. Eng. J., 171(1), 242 (2011)
  10. Pereiro AB, Rodriguez A, AIChE J., 56(2), 381 (2010)
  11. Zhou T, Wang ZY, Chen LF, Ye YM, Qi ZW, Freund H, Sundmacher K, J. Chem. Thermodyn., 48, 145 (2012)
  12. Yang XJ, Fane AG, Bi J, Griesser HJ, J. Membr. Sci., 168(1-2), 29 (2000)
  13. Ren ZQ, Zhang WD, Li HS, Lin W, Chem. Eng. J., 146(2), 220 (2009)
  14. Ho SV, Sheridan PW, Krupetsky E, J. Membr. Sci., 112(1), 13 (1996)
  15. Ren ZQ, Meng HL, Zhang WD, Liu JT, Cui CH, Sep. Sci. Technol., 44(5), 1181 (2009)
  16. Suren S, Wongsawa T, Pancharoen U, Prapasawat T, Lothongkum AW, Chem. Eng. J., 191, 503 (2012)
  17. Suren S, Pancharoen U, Thamphiphit N, Leepipatpiboon N, J. Membr. Sci., 448, 23 (2013)
  18. Wongsawa T, Leepipatpiboon N, Thamphiphit N, Pancharoen U, Lothongkum AW, Chem. Eng. J., 222, 361 (2013)
  19. Han D, Row KH, Molecules, 15, 2405 (2010)
  20. Fortunato R, Afonso CAM, Reis MAM, Crespo JG, J. Membr. Sci., 242(1-2), 197 (2004)
  21. Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB, J. Phys. Chem. B, 111(19), 5058 (2007)
  22. Chakraborty M, Dobaria D, Parikh PA, Petro. Sci. Technol., 30, 2504 (2012)
  23. Matsumoto M, Inomoto Y, Kondo K, J. Membr. Sci., 246(1), 77 (2005)
  24. Matsumoto M, Ueba K, Kondo K, Desalination, 241(1-3), 365 (2009)
  25. Wang BG, Lin J, Wu F, Peng Y, Ind. Eng. Chem. Res., 47(21), 8355 (2008)
  26. Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper AK, J. Phys. Chem. B, 109(4), 1593 (2005)
  27. Tsuzuki S, Mikami M, Yamada S, J. Am. Chem. Soc., 129(27), 8656 (2007)
  28. Tsuzuki S, Yoshida M, Uchimaru T, Mikami M, J. Phys. Chem. A, 105(4), 769 (2001)
  29. Noda A, Watanabe M, Electrochim. Acta, 45(8-9), 1265 (2000)
  30. Arce A, Earle MJ, Rodriguez H, Seddon KR, Green Chem., 9, 70 (2007)
  31. Ren ZQ, Zhang WD, Liu YM, Dai Y, Cui CH, Chem. Eng. Sci., 62(22), 6090 (2007)
  32. Viegas RMC, Rodriguez M, Luque S, Alvarez JR, Coelhoso IM, Crespo JPSG, J. Membr. Sci., 145(1), 129 (1998)