화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.4, 630-638, April, 2014
Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles: Process optimization and kinetic studies
E-mail:,
We studied the optimization of hexavalent chromium (Cr(VI)) removal from aqueous solution using the synthesized zero-valent iron nanoparticles stabilized with sepiolite clay (S-ZVIN), under various parameters such as reaction time (min), initial solution pH and concentration of S-ZVIN (g·L^(-1)) using response surface methodology (RSM). The kinetic study of Cr(VI) was conducted using three types of the most commonly used kinetic models including pseudo zero-order, pseudo first-order, and pseudo second-order models. The rate of reduction reaction showed the best fit with the pseudo first-order kinetic model. The process optimization results revealed a high agreement between the experimental and the predicted data (R2=0.945, Adj-R2=0.890). The results of statistical analyses showed that reaction time was the most impressive factor influencing the efficiency of removal process. The optimum conditions for maximum response (98.15%) were achieved at the initial pH of 4.7, S-ZVIN concentration of 1.3 g·L^(-1) and the reaction time of 75 min.
  1. Palmer CD, Plus RW, EPA, 540/5-94/505 (1994)
  2. World Health Organization, Guidelines for drinking water quality, Health criteria and other supporting information, WHO, Geneva, 2 (1996)
  3. Pantsar-Kallio M, Reinikainen SP, Oksanen M, Anal. Chim. Acta, 439, 9 (2011)
  4. International Agency for Research on Cancer (IARC), Chromium and chromium compounds; IARC Monograph Evaluating Carcinogenic Risks to Humans, 49 (1990)
  5. Cao HS, Zhang WX, J. Hazard. Mater., 132(2-3), 213 (2006)
  6. Zongo I, Leclerc JP, Maiga HA, Wethe J, Lapicque F, Sep. Purif. Technol., 66(1), 159 (2009)
  7. Kim DG, Hwang YH, Shin HS, Ko SO, Desal. Water Treat., 49, 147 (2012)
  8. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S, Desalination, 270(1-3), 105 (2011)
  9. Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67 (2005)
  10. Esfahani AR, Firouzi AF, Sayyad G, Kiasat A, Alidokht L, Khataee AR, Res. Che. Intm., 40, 431 (2014)
  11. Chuang FW, Larson RA, Wessman MS, Environ. Sci. Technol., 29, 2460 (1995)
  12. Wai CM, Yak HK, Wenclawiak BW, Cheng IF, Doyle JG, Environ. Sci. Technol., 33, 1307 (1999)
  13. Agrawal A, Tratnyek PG, Environ. Sci. Technol., 30, 153 (2005)
  14. Badstra JZ, Miehr R, Johnson RL, Tratnyek PG, Environ. Sci. Technol., 39, 230 (2005)
  15. Satapanajaru T, Anurakpongsatorn P, Songsasen A, Boparai H, Park J, Water. Air. Soil. Pollut., 175, 361 (2006)
  16. Sun YP, Li XQ, Zhang WX, Wang HP, J. Colloid Interface Sci., 308, 60 (2007)
  17. He F, Zhao D, Environ. Sci. Technol., 39, 3314 (2005)
  18. He F, Zhang M, Qian TW, Zhao DY, J. Colloid Interface Sci., 334(1), 96 (2009)
  19. Lin YH, Tseng HH, Wey MY, Lin MD, Colloids Surf., A., 349, 134 (2009)
  20. Tiraferri A, Chen KL, Sethi R, Elimelech M, J. Colloid Interface Sci., 324(1-2), 71 (2008)
  21. Reyhanitabar A, Alidokht L, Khataee AR, Oustan S, Eur. J. Soil. Sci., 63, 724 (2012)
  22. Zhang X, Lin S, Chen Z, Megharaj M, Naidu R, Water Res., 45, 3481 (2011)
  23. Sin JC, Lam SM, Mohamed AR, Korean J. Chem. Eng., 28(1), 84 (2011)
  24. KeshavarzJafarzadeh N, Sharifnia H, Hosseini SN, Rahimpour F, Korean J. Chem. Eng., 28, 531 (2011)
  25. Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364 (2009)
  26. Imandi SB, Chinthala R, Saka S, Vechalapu RR, Nalla KK, Korean J. Chem. Eng., 30(5), 1067 (2013)
  27. Kim D, Song Y, Park Y, Korean J. Chem. Eng., 30(3), 664 (2013)
  28. Song Y, Kim D, Park Y, Korean J. Chem. Eng., 28(1), 156 (2011)
  29. Aber S, Khataee A, Sheydaei M, Bioresour. Technol., 100(24), 6586 (2009)
  30. Ishak S, Malakahmad A, Korean J. Chem. Eng., 30(5), 1083 (2013)
  31. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S, Clean-Soil. Air Water, 39, 633 (2011)
  32. Murugesan A, Ravikumar L, SathyaSelvaBala V, SenthilKumar P, Vidhyadevi T, Kirupha SD, Kalaivani SS, Krithiga S, Sivanesan S, Desalination, 271(1-3), 199 (2011)
  33. Khataee AR, Environ. Technol., 31, 73 (2010)
  34. Aleboyeh A, Daneshvar N, Kasiri MB, Chem. Eng. Process., 47(5), 827 (2008)
  35. Haaland PD, Experimental design in biotechnology, Marcel Dekker, New York, Basel (1989)
  36. Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B, Chem. Eng. J., 181, 198 (2010)
  37. Xu Y, Zhao D, Water. Res., 41, 2101 (2007)
  38. Hojati S, Khademi H, J. Cent. South. Univ. T., 20, 3627 (2013)
  39. Liu HL, Chiou YR, Chem. Eng. J., 112(1-3), 173 (2005)
  40. Cicek E, Cojocaru C, Zakrzewska-Trznadel G, Harasimowicz M, Miskiewicz A, Environ. Technol., 33, 51 (2012)
  41. Zhang C, Zhu Z, Zhang H, Hu Z, J. Environ. Sci., 24, 1021 (2012)
  42. Jovanovic GN, Plazl PZ, Sakrittichai P, Al-Khaldi K, Ind. Eng. Chem. Res., 44(14), 5099 (2005)
  43. Powell RM, Puls RW, Hightower SK, Sabatini DA, Environ. Sci. Technol., 29, 1913 (1995)
  44. Zhou H, He Y, Lan Y, Mao J, Chen S, Chemosphere, 72, 870 (2008)
  45. Fang ZQ, Qiu XQ, Huang RX, Qiu XH, Li MY, Desalination, 280(1-3), 224 (2011)
  46. Alowitz MJ, Sherer MM, Environ. Sci. Technol., 36, 299 (2002)
  47. Wang XS, Tang YJ, Chen LF, Li FY, Wan WY, Tan YB, Clean-Soil. Air Water, 38, 236 (2010)
  48. Shi L, Zhang X, Che Z, Water Res., 45, 886 (2011)
  49. Ponder SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564 (2000)