화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.2, 220-224, March, 2014
콘택트렌즈용 하이드로젤로의 단백질 흡착 반응속도 이해
Understanding of Protein Adsorption Kinetics to Contact Lens Hydrogels
E-mail:
초록
콘택트렌즈용 하이드로젤로의 단백질 흡착량을 시간에 따라 분석하여 계면으로 확산되는 단백질 흡착 반응속도를 연구하였다. HEMA(hydroxyethylmethacrylate)계열 하이드로젤과 silicone계열 하이드로젤을 단백질(알부민 또는 IgG)용액에 침지시킨 후 단백질 흡착량을 시간에 따라 측정하였다. 모든 하이드로젤로의 단백질 흡착량은 단시간(10분)에 급격히 증가한 후 90분 동안 변화 없이 일정하였다. 빠른 단백질 분자의 확산에도 불구하고 계면에너지 감소는 한 시간 이상 진행되는데 이는 계면 탈수 현상이 한 시간 이상 진행되기 때문으로 이해된다. 계면에너지와 단백질 흡착량의 상관관계를 이해하여 콘택트렌즈 재질로의 단백질 흡착 반응 속도의 메커니즘을 분석하였다.
Protein adsorption kinetics was studied with the amount of proteins adsorbed to contact lens hydrogels over time scales. Hydroxyethylmethacrylate (HEMA) and silicone hydrogels were dipped in protein solutions (albumin or IgG) and adsorption amounts were measured over time scales. The amount of protein adsorbed to both hydrogel types increased rapidly in 10 min, and remained consistently in 90 min. Decreasing interfacial energetics was taken slowly up to an hour in spite of rapid diffusion of protein molecules. This is due to the fact that water deprivation from three dimensional interphase initially formed by protein diffusion took over an hour. Interpretation of adsorption kinetics on contact lens hydrogels was discussed with understanding of relationship between surface energy and protein adsorption capacity.
  1. Parhi P, Golas A, Barnthip N, Noh H, Vogler EA, Biomaterials, 30, 6814 (2009)
  2. Noh H, Vogler EA, Biomaterials, 28, 405 (2007)
  3. Noh H, Yohe S, Vogler EA, Biomaterials, 29, 2033 (2006)
  4. Krishnan A, Siedlecki CA, Vogler EA, Langmuir, 19(24), 10342 (2003)
  5. Brash J, Lyman D, J. Biomed. Mater. Res., 3, 175 (1969)
  6. Menzies KL, Jones L, Optom. Vis. Sci., 88, 493 (2011)
  7. Menzies KL, In vitro Analysis of Wettability and Physical Properties of Blister Pack Solutions of Hydrogel Contact Lenses, University of Waterloo, pp. 1-251 (2010)
  8. Holden B, Sweeney D, Vannas A, Nilsson K, Efron N, Invest. Ophthalmol. Vis. Sci., 26, 1489 (1985)
  9. Nicolson PC, Vogt J, Biomaterials, 22, 3273 (2001)
  10. Barnthip N, Noh H, Leibner E, Vogler EA, Biomaterials, 29, 3062 (2008)
  11. Varoqui R, Pefferkorn E, J. Colloid Interface Sci., 109, 520 (1986)
  12. Feder J, Giaever I, J. Colloid Interface Sci., 78, 144 (1980)
  13. Sagvolden G, Giaever I, Feder J, Langmuir, 14(21), 5984 (1998)
  14. Slomkowski S, Sosnowski S, Przerwa E, CR Chim., 6, 1393 (2003)
  15. Krishnan A, Liu Y, Cha P, Allara DL, Vogler EA, Biomaterials, 27, 3187 (2006)
  16. Krishnan A, Sturgeon J, Siedlecki CA, Vogler EA, J. Biomed. Mater. Res., 68, 544 (2004)
  17. Krishnan A, Liu YH, Cha P, Allara D, Vogler EA, Biomaterials, 27, 3187 (2006)
  18. Miller R, Colloid Polym. Sci., 259, 375 (1981)
  19. Jeon S, Noh H, Polym.(Korea), 36(3), 338 (2012)
  20. Noh H, Vogler EA, Biomaterials, 27, 5801 (2006)
  21. Lensen MC, Schulte VA, Salber J, Diez M, Menges F, Moller M, Pure. Appl. Chem., 80, 2479 (2008)
  22. Gonzalez-Meijome JM, Lopez-Alemany A, Almeida JB, Parafita MA, Refojo MF, J. Biomed. Mater. Res. B. Appl. Biomater., 83, 512 (2007)
  23. Krishnan A, Liu YH, Cha P, Allara D, Vogler EA, J. R. Soc. Interface, 3, 283 (2006)
  24. Fick A, London Edinburgh Dublin Philos Mag., J. Sci., 10, 30 (1855)
  25. Vogler E, Biomaterials, 33, 1202 (2012)
  26. Pefferkorn E, Carroy A, Varoqui R, Macromolecules, 18, 2252 (1985)
  27. Guggenheim E, Thermodynamics: An Advanced Treatment for Chemists and Physicists, Wiley, New York (1967)
  28. Volger EA, “Interfacial chemistry in biomaterials science”, in Wettability, Berg J, Editor, Marcel Dekker, New York, USA, Vol 5, p 183 (1993)
  29. Vogler EA, Adv. Colloid Interface Sci., 74, 69 (1999)