Korean Chemical Engineering Research, Vol.52, No.2, 247-255, April, 2014
다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응
Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode
E-mail:
초록
전극 촉매 물질인 페롭스카이트 형 La0.8Sr0.2CuO3 분말을 시트릭산 합성법으로 제조하였다. 이렇게 제조한 La0.8Sr0.2CuO3 분말과 지지전도체로 탄소 및 소수성 결합제로 polytetrafluoroethylene(PTFE)를 혼합하여 다공성 전극을 제조하였다. 이산화탄소를 0.1, 0.5, 1.0M KOH 전해액에 용해하여 5, 10 ℃의 반응온도에서 -1.5~-2.5 V(vs. Ag/AgCl)의 인가전위로 전기화학 실험을 수행한 결과, 액상생성물은 온도와 상관없이 메탄올, 에탄올, 2-프로판올, 1,2-부탄올이 얻어진 반면 기상생성물로는 5 ℃에서는 메탄, 에탄, 에틸렌이 10 ℃에서는 메탄, 에탄, 프로판이 생성되었다. 전체 패러데이 효율의 관점에서 CO2 환원의 최적 인가전압은 기상의 경우 높은 값을(-2.0, -2.2 V) 보였고, 액상의 경우는 전해액 농도와 반응온도에 상관없이 낮은 전압(-1.5 V)임을 알 수 있었다.
La0.8Sr0.2CuO3 powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and 10 ℃ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at 5 ℃, and methane, ethane and propane at 10 ℃ respectively. Optimal potentials for CO2 reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (.1.5 V) for liquid products regardless of concentration and temperature.
- Park JH, Park TS, Baek IH, Park S, Polyurethane, 3(1), 28 (2010)
- Park JH, Baek IH, Korean Ind. Chem. News, 12(1), 3 (2009)
- Park JH, Kim JP, Korean Ind. Chem. News, 14(3), 14 (2011)
- Yi CK, Korean Ind. Chem. News, 12(1), 30 (2009)
- Seo B, Kim JH, Ahn H, Chang BJ, Lee KH, Korean Ind. Chem. News, 14(3), 1 (2011)
- Vaska L, Schreiner S, Felty RA, Yu JY, J. Mol. Catal., 52(2), 11 (1989)
- Kojima F, Aida T, Inoue S, J.Am. chem. Soc., 108(3), 391 (1986)
- Halmann M, “Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products,” CRC Press, Boca Raton (1993)
- Parkinson BA, Weaver PF, Nature, 309, 148 (1984)
- Sullivan BP, Krist K, Guard HE, “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide,” Elsevier, Amsterdam (1993)
- Wasmus S, Cattaneo E, Vielstich W, Electrochim. Acta, 35(4), 771 (1990)
- Frese KW Jr J, Electrochem. Soc., 138(11), 3338 (1991)
- Taguchi S, Aramata A, Electrochim. Acta, 39(17), 2533 (1994)
- Kyriacou G, Anagnostopoulos A, “Electroreduction of CO2 on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences,” J. Electroanal. Chem., 322(1-2), 233-246 (1992)
- Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097 (1994)
- Hori Y, Murata A, Takahashi R, J. Chem. Soc. Faraday Trans. I, 85, 2309 (1989)
- Cook RL, MacDuff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320 (1988)
- Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K, Bull. Chem. Soc. Jpn., 63, 2459 (1990)
- Bandi A, J. Electrochem. Soc., 137(7), 2157 (1990)
- Katoh A, Uchida H, Shibata M, Watanabe M, J. Electrochem. Soc., 141(8), 2054 (1994)
- Mori M, Naruoka Y, Naoi K, Fauteux D, J. Electrochem. Soc., 145(7), 2340 (1998)
- Park JH, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Korean Chem. Eng. Res., 36, 751 (1998)
- Kudo T, Obayashi H, Yoshida M, J. Electrochem. Soc., 124(3), 321 (1977)
- Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N, J. Electrochem. Soc., 137(11), 3430 (1990)
- Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195(1), 81 (1985)
- Bard AJ, Faulkner LR, “Electrochemical Methods: Fundamentals and Applications,” p16-38, Wiley & Sons, New York (1980)
- Tejuca LG, Fierro JLG, “Properties and Applications of Perovskite-Type Oxides,” Marcel Dekker, New York (1993)
- Ponec V, Catal. Rev., 11, 41 (1975)
- Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81 (1985)
- Choi C, Jung Y, Kim NJ, Pak D, Chung KY, Kim LH, Kwon Y, Korean Chem. Eng. Res., 50(5), 933 (2012)