Clean Technology, Vol.20, No.1, 35-41, March, 2014
입상 활성탄에 의한 Quinoline Yellow의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구
Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon
E-mail:
초록
본 연구에서는 입상 활성탄(8 × 30 mesh, 1,578 m2/g)을 사용하여 quinoline yellow 염료를 흡착하는데 필요한 흡착평형과 흡착동역학 및 열역학에 대하여 조사하였다. 등온흡착평형관계를 검토한 결과, 평가된 Langmuir 식의 상수(RL = 0.0730~0.0854)와 Freundlich 식의 상수(1/n = 0.2077~0.2268)로부터 입상 활성탄에 의해 quinoline yellow를 적절하게 흡착처리 할 수 있음을 알았고, Temkin 식의 상수(B = 15.759~21.014 J/mol)와 Dubinin-Radushkevich 식의 상수(E = 1.0508~1.1514 kJ/mol) 로부터 흡착공정이 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 반응속도식의 적용결과는 유사이차 반응속도식이 유사일차반응속도식에 비해 일치도가 높은 것으로 나타났으며, 흡착공정은 입자내세공확산과 표면확산의 두단계로 진행됨을 알았다. 유사이차반응속도식을 적용한 열역학적 해석을 통해 평가된 엔탈피 변화값(+35.03 kJ/mol)과 활성화에너지값(+35.137 kJ/mol)으로부터 흡착공정이 흡열반응으로 진행됨을 알았다. 또한 엔트로피 변화값(+134.38 J/molK)은 흡착공정의 무질서도가 증가한다는 것을 나타내었고, 온도가 올라갈수록 자유에너지값이 감소하는 경향을 보인 것은 활성탄에 대한 quinoline yellow의 흡착반응은 온도가 올라갈수록 자발성이 높아지는 것으로 판단되었다.
Batch adsorption studies were carried out for equilibrium, kinetic and thermodynamic parameters for quinoline yellow adsorption by granular activated carbon (8 × 30 mesh, 1,578 m2/g) with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. From estimated Langmuir constant (RL = 0.0730~0.0854), Freundlich constant (1/n = 0.2077~0.2268), this process could be employed as effective treatment for removal of quinoline yellow. From calculated Temkin constant (B = 15.759~21.014J/mol) and Dubinin-Radushkevich constant (E = 1.0508~1.1514 kJ/mol), this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with r2 > 0.99 for all concentrations and temperatures. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy value (+35.137 kJ/mol) and enthalpy change (35.03 kJ/mol)
indicated endothermic nature of the adsorption process. Entropy change (+134.38 J/mol K) showed that increasing disorder in process. Free energy change found that the spontaneity of process increased with increasing adsorption temperature.
- Gupta VK, Ali I, Environ. Sci. Technol., 42, 766 (2008)
- Gupta VK, Mittal A, Gajbe V, Mittal J, Ind. Eng. Chem. Res., 45(4), 1446 (2006)
- Benefield LD, Judkins JF, Weand BL, “Process Chemistry for Water and Wastewater Treatment,” Prentice-Hall, Englewood Cliffs, NJ (1982)
- Weber WJ, Physicochemical Processes for Water Quality Control, 1st ed., Wiley-Interscience, New York, pp.173-174 (1972)
- Suffet IH, McGuire MJ, Activated Carbon Adsorption of Organics from Aqueous Phase, Vol. 1, 1st ed., Ann Arbor Science, Ann Arbor, MI, pp.1-11 (1980)
- Slejko FL, Adsorption Technology: A Step-By-Step Approach to Process Valuation and Application, 1st ed., Dekker, New York, pp.37-68 (1985)
- Coleman M, Cancer Risk After Medical Treatment, 1st ed., Oxford Univ. Press, New York, pp.95-98 (1991)
- Korean Ministry of Food & Drug Safety, Food Additives Code, 1st ed., Dongwon Publisher, pp.182-212 (2002)
- Lu FC, Lavallee A, Canad. Pharm. J., 97, 30 (1964)
- Oettel H, Frohberg H, Nothdurft H, Wilhelm G, Arch. Toxikol., 21, 9 (1965)
- Gupta VK, Mittal A, Gajbe V, J. Colloid Interface Sci., 284(1), 89 (2005)
- Lee JJ, Lee CY, Clean Technol., 16(3), 206 (2010)
- Rameshrajaa D, Srivastavaa VC, Kushwahab JP, Malla ID, “Quinoline Adsorption onto Granular Activated Carbon and Bagasse Fly Ash,” Chem. Eng. J., 181-182, 343-351 (2012)
- Budavari S, The Merck Index, 11th ed., Merck & Co. Inc., p.1268 (1983)
- Weber TW, Chakrabarti RK, Ind. Chem. Eng. Fund., 5, 212 (1996)
- Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
- Sivakumar P, Palanisamy PN, Int. J. Chem. Technol. Res., 1(3), 502 (2009)
- Dubinin MM, Zaverina ED, Radushkevich LV, J. Phy. Chem., 21, 1351 (1947)
- Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
- Kana N, Sundaram MM, J. Dyes Pig., 51, 25 (2001)
- Hameed BH, El-Khaiary MI, J. Hazard. Mater., 153(1-2), 701 (2008)
- Nethaji S, Sivasamy A, Thennarasu G, Saravanan S, J. Hazard. Mater., 181(1-3), 271 (2010)
- Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W, Chemosphere, 53(6), 655
- Jaycock MJ, Parfitt GD, Chemistry of Interfaces, 1st ed., Ellis Horwood Ltd., Chichester, p.69 (1981)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
- Chakraborty S, Chowdhury S, Saha PD, Korean J. Chem. Eng., 29(11), 1567 (2012)
- Tang H, Zhou W, Zhang L, J. Hazard. Mater., 209, 218 (2012)
- Wang S, Zhu ZH, Dyes. Pig., 75, 306 (2007)
- Ahmad R, Kumar R, J. Environ. Manage., 91, 1032 (2010)
- Lee JJ, Clean Technol., 17(2), 97 (2011)