화학공학소재연구정보센터
Clean Technology, Vol.20, No.1, 42-50, March, 2014
페로니켈 슬래그로 부터 제조된 Mg(OH)2를 이용한 CO2 고정화
CO2 Fixation by Magnesium Hydroxide from Ferro-Nickel Slag
E-mail:
초록
본 논문은 페로니켈 슬래그를 이용하여 간접적으로 CO2를 고정화시키는 기술에 대한 연구를 하였으며, 효율적으로 Mg를 추출하여 제조된 Mg(OH)2의 CO2 고정화 최적 조건을 제시하고자 하였다. 실험 결과, 최적의 추출조건은 1 M H2SO4, 반응 온도 333 K이었으며, 용출액에 NaOH를 첨가하여 pH값을 8까지 높일 경우, 침전물은 Fe2O3로 확인되었다. 또한 pH 값이 11 까지 높아질 때 , 그 성분은 Mg(OH)2로 나타났다. 이렇게 제조된 Mg(OH)2 slurry 용액을 CO2 고정화실험에서 준 2차 탄산화 반응 모델을 통해 적용한 결과, 반응온도 및 초기 CO2분압에 따라 초기 CO2의 고정화 속도를 증진할 수 있는 반면 반응온도가 323 K 이상 높아질 경우, 고정화속도가 감소하는 것으로 나타났다. 또한 CO2 고정화반응 시 이온을 조사한 결과, CO2를 고정화 할 수 있는 최적의 pH 조건으로 8.38 이상 유지해야 할 것으로 판단되었다. 종합적으로 본 연구에서는 페로니켈 슬래그를 이용하여 CO2를 고정화하기 위한 최적의 조건을 도출하였으며, 향후 CO2를 고정화 하기 위한 연구의 기초자료로 활용 할 수 있을 것으로 판단된다.
In this study, the Mg(OH)2 slurry was made form ferro-nickel slag and then used for CO2 sequestration. The experiments were in the order as leaching step, precipitation, carbonation experiments. According to the leaching results, the optimal leaching conditions were H2SO4 concentration of 1 M and the temperature of 333 K. In the Mg(OH)2 manufacturing step, NaOH was added to increase the pH upto 8, the first precipitation was confirmed as Fe2O3. After removal the first precipitation, the pH was upto 11, the Mg(OH)2 was generated by XRD analysis. The Mg(OH)2 slurry was used for CO2 sequestration. The pseudo-second-order carbonation model was used to apply for CO2 sequestration. The CO2 sequestration rate was increased by the CO2 partial pressure and temperature. However, CO2 sequestration rate was decreased when temperature upto 323 K. After CO2 sequestrated by Mg(OH)2, the CO2 can be sequestrated stable as MgCO3. This study also presented optimal sequestration condition was the pH upto 8.38, the maximum MgCO3 can be generated. This study can be used as the basic material for CO2 sequestration by ferro-nickel slag at pilot scale in the future.
  1. Min DJ, “Strategy for Reducing Greenhouse Gas Emissions in the Steel Industry,” Research Division, Ministry of Knowledge Economy, Korean Iron & Steel Association, October (2010)
  2. Rubin ES, “Special Report on Carbon Dioxide Capture and Storage,” IPCC (2005)
  3. Chae SC, Jang YN, Ryu KW, J. Geol. Soc. Korea, 45, 527 (2009)
  4. Kim HS, Chae SC, Ahn ZH, Jang YN, Miner. Sci. Ind., 22(1) (2009)
  5. Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 43(24), 7880 (2004)
  6. Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676 (2005)
  7. Back M, Kuehn M, Stanjek H, Peiffer S, Environ. Sci. Technol., 42, 4520 (2008)
  8. Bobicki ER, Liu QX, Xu ZH, Zeng HB, Prog. Energy Combust., 38, 302 (2012)
  9. Doucet FJ, Miner. Eng., 23, 262 (2010)
  10. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R, Ind. Eng. Chem. Res., 47(18), 7104 (2008)
  11. Kim V, Li YJ, Korea Solid Wastes Eng. Soc., 283 (2010)
  12. Chu YS, Lim YR, Park HB, Song H, Lee JK, Lee SH, J. Kor. Ceram. Soc., 47(6), 613 (2010)
  13. Kim EY, Choi SW, Park JH, Kim V, Li YJ, Kor. Solid Wastes Eng. Soc., 28, 672 (2011)
  14. Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM, “Activation of Magnesium Rich Minerals as Carbonation of CO2 Gas Disposal,” Twenty-first Annual International Pittsburgh Coal Conference, Osaka (2005)
  15. Nduagu E, Bjorklof T, Fagerlund J, Warna J, Geerlings H, Zevenhoven R, Miner. Eng., 30, 75 (2012)
  16. Kim HS, “The Basic Research on CO2 Fixation by Mineral Carbonation Technology,” Korea Institute of Geoscience And Mineral Resources, 87-88 (2009)
  17. Lagergren S, Handlingar., 24, 1 (1898)
  18. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  19. Lopez RP, Hernandez GM, Nieto JM, Renard F, Charlet L, Appl. Geochem., 23, 2292 (2008)
  20. Oelkers EH, Chem. Geol., 175, 485 (2001)
  21. Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36 (2007)
  22. Lacin O, Donmez B, Demir F, Int. J. Miner. Process., 75(1-2), 91 (2005)
  23. Kose TE, J. Eng. Archit, XXV(2), 43 (2012)
  24. Hernandez GM, Renard F, Chiriac R, Findling N, Toche F, Crystal Growth Design, 12(11), 5233 (2012)
  25. Nduagu E, “Mineral Carbonation: Preparation of Magnesium Hydroxide [Mg(OH)2] from Serpentinite Rock,” Master Dissertation, Turku: Abo Akademi University, Finland (2008)
  26. Experience N, Romaoa I, Zevenhovena R, “Production of Mg(OH)2 for CO2 Emissions Removal Applications: Parametric and Process Evaluation,” Proceedings of ECOS 2012, June 26-29 (2012)
  27. Nduagu E, Bjorklof T, Fagerlund J, Makila E, Salonen J, Geerlings H, Zevenhoven R, Miner. Eng., 30, 87 (2012)
  28. Hanhoun M, Montastruc L, Azzaro-Pantel C, Biscans B, Freche M, Pibouleau L, Chem. Eng. J., 167(1), 50 (2011)
  29. Botero C, Field Herzog HJ, Ghoniem AF, Appl. Energy, 104, 408 (2013)
  30. Jung KS, Keener TC, Green VC, Khang SJ, Int. J. Environ. Technol. Manage., 4(1), 116 (2004)
  31. Fernandez Bertos M, Simons SJR, Hills CD, Carey PJ, J. Hazard. Mater., 112(3), 193 (2004)
  32. Byeon TB, Lee JY, Kim DY, Lee HH, Kim HS, Res. Inst. Ind. Sci. Technol., 19(1), 32 (2005)
  33. Vagvolgyi V, Hales M, Frost RL, Locke A, Kristof J, Horvath E, J. Therm. Anal. Calorim., 94(2), 523 (1994)
  34. Jarosinski A, Madejska L, Minerlia Slovaca, 42, 317 (2010)
  35. Olajire AA, J. Petrol. Sci. Eng., 109(22), 364 (2013)