화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.3, 304-309, March, 2014
Dielectric and Conductivity Properties of Poly(L-lactide) and Poly(L-lactide)/Ionic Liquid Blends
E-mail:,
Dielectric relaxation spectroscopy (DRS) was employed to study the dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid (IL) blends. The experimental dielectric data were analyzed within the formalism of complex permittivity. The results were discussed in terms of AC conductivity, αN relaxation corresponding to the longest normal mode motion, α relaxation originating from the segmental mode motion, and DC conductivity. The results revealed that the motion of the polymer chains governs the charge carrier transport. The temperature dependence of the relaxation times follows the Vogel-Tammann-Fulcher (VTF) equation. The incorporation of IL into the matrix accelerates the segmental (α) and normal mode (αN) motions and the conductivity, and increases the charge carrier movement of IL following the longest αN motion of chains, which led to an increase in the relaxation strength of the αN relaxation.
  1. Chiellini E, Solaro R, Biodegradable Plastics and Polymers, Springer Press, New York (2003)
  2. Gebelein C, Carraher C, Biotechnology and Bioactive Polymers, Plenum Press, New York (1994)
  3. Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P, J. Appl. Polym. Sci., 86(6), 1497 (2002)
  4. Jiang L, Zhang JW, Wolcott MP, Polymer, 48(26), 7632 (2007)
  5. Sessler GM, Eletrcets, Spinger-Verlag Press, Berlin (1980)
  6. Calleja RD, J. Non-Cryst. Solids., 172, 1413 (1994)
  7. Starkweather HW, Avakian P, J. Polym. Sci. Part B: Polym. Phys., 30, 637 (1992)
  8. Mudarra M, Diaz-Calleja R, Belana J, Canadas JC, Diego JA, Sellares J, Sanchis MJ, Polymer, 45(8), 2737 (2004)
  9. Mierzwa M, Floudas G, Dorgan J, Knauss D, Wegner J, J. Non-Cryst. Solids., 307, 296 (2002)
  10. Mijovic J, Sy JW, Macromolecules, 35(16), 6370 (2002)
  11. Ren JD, Urakawa O, Adachi K, Macromolecules, 36(1), 210 (2003)
  12. Braunlich P, Thermally Stimulated Relaxation in Solids, Springer-Verlag, Berlin (1979)
  13. Rogers RD, Seddon KR, Science., 302, 792 (2003)
  14. Kubisa P, Prog. Polym. Sci., 29, 3 (2004)
  15. Chiappe C, Pieraccini D, J. Phys. Org. Chem., 18, 275 (2005)
  16. Park K, Ha JU, Xanthos M, Polym. Eng. Sci., 50(6), 1105 (2010)
  17. Park KI, Xanthos M, Polym. Degrad. Stab., 94, 834 (2009)
  18. Ding YS, Tang HO, Zhang XM, Wu SY, Xiong RY, Eur. Polym. J., 44, 1247 (2008)
  19. Kyritsis A, Pissis P, Grammatikakis J, J. Polym. Sci. B: Polym. Phys., 33(12), 1737 (1995)
  20. Howard W, Starkweather JR, Avakian P, J. Polym. Sci.Part B: Polym. Phys., 30, 637 (1992)
  21. Mudarra M, Diaz-Calleja R, Belana J, Canadas JC, Diego JA, Sellares J, Sanchis MJ, Polymer, 42(4), 1647 (2001)
  22. Davis RD, Bur AJ, McBrearty M, Lee YH, Gilman JW, Start PR, Polymer, 45(19), 6487 (2004)
  23. Corezzi S, Capaccioli S, Gallone G, Livi A, Rollay PA, J. Phys. Condens. Matter., 9, 6911 (1997)
  24. Stickel F, Fischer EW, Richert R, J. Chem. Phys., 102(15), 6251 (1995)
  25. Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD, Chem. Commun., 13, 1370 (2002)
  26. Neagu RM, Neagu E, Bonanos N, J. Phys. D: Appl. Phys., 30, 1551 (1997)