화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.2, 121-133, April, 2014
지속 가능한 블록 공중합체 기반 열가소성 탄성체
Sustainable Block Copolymer-based Thermoplastic Elastomers
E-mail:
초록
ABA형태의 삼중블록공중합체는 고무상과 유리상의 상대적 성분에 좌우되는 열가소성 탄성체와 강화 플라스틱으로써 유용하다. 이러한 물질은 다른 고분자와 혼합하여 첨가제, 강화제, 상용화제로써 기능성을 줄 수 있다. 상업적으로 유용한 대부분의 블록 공중합체는 석유로부터 유래된다. 지구상의 유한한 화석자원 공급과 석유 사용 및 채굴에 관련된 경제, 환경적 비용을 고려하면 그 대안은 매력적이다. 이러한 흐름에 더하여 미래 지속 가능한 물질의 최종 용도를 위한 설계 및 그 실행이 요구되고 있다. 본 총설에서는 재생 가능한 ABA 형태의 삼중블록 공중합체 합성과 특성을 살펴보고, 특히 공중합체의 경성부분을 위한 높은 유리 전이온도 혹은 녹는점을 지닌 식물 유래 폴리올레핀과 다당류 유래 폴리락타이드와 공중합체의 연성부분을 위한 바이오 기반, 낮은 유리 전이온도, 무결정의 탄화수소계 고분자에 대해 논의하려고 한다. 이를 위해서 다양하게 제어된 고분자 중합법은 강력한 도구임이 증명되고 있다.이러한 혼성 고분자의 정교한 합성에 관한 연구는 재생가능성, 생분해성, 고성능을 지닌 새로운 탄성체와 강화 플라스틱의 발전을 이끌고 있다.
Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow’s sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.
  1. Holden G, Legge NR, Quirk R, Schroeder HE, Thermoplastic Elastomers., 2nded., Hanser Publishers, Munich (1996)
  2. Holden G, Kricheldorf HR, Quirk RP, Thermoplastic Elastomers., 3rded., Hanser Publishers, Munich (2004)
  3. Bates FS, Fredrickson GH, Phys. Today, 52, 32 (1999)
  4. Nagpal U, Detcheverry FA, Nealey PF, de Pablo JJ, Macromolecules, 44(13), 5490 (2011)
  5. Matsen MW, Thompson RB, J. Chem. Phys., 111(15), 7139 (1999)
  6. Xu J, Zhang A, Zhou T, Cao X, Xie Z, Polym. Degrad. Stab., 92, 1682 (2007)
  7. Singh RP, Desai SM, Solanky SS, Thanki PN, J. Appl. Polym. Sci., 75(9), 1103 (2000)
  8. Weisz PB, Phys. Today., 57, 47 (2004)
  9. Satoh K, Sugiyama H, Kamigaito M, Green Chem., 8, 878 (2006)
  10. Satoh K, Saitoh S, Kamigaito M, J. Am. Chem. Soc., 129(31), 9586 (2007)
  11. Satoh K, Matsuda M, Nagai K, Kamigaito M, J. Am. Chem. Soc., 132(29), 10003 (2010)
  12. Matsuda M, Satoh K, Kamigaito M, J. Polym. Sci. A: Polym. Chem., 51(8), 1774 (2013)
  13. Matsuda M, Satoh K, Kamigaito M, Macromolecules, 46(14), 5473 (2013)
  14. Bates FS, Fredrickson GH, Annu. Rev. Phys. Chem., 41, 525 (1990)
  15. Avetz V, Simon PFW, Adv. Polym. Sci., 189, 125 (2005)
  16. Hawker CJ, Russell TP, MRSBull., 30, 952 (2005)
  17. Meier MAR, Metzger JO, Schubert US, Chem. Soc. Rev., 36, 1788 (2007)
  18. Xia Y, Larock RC, Green Chem., 12, 1893 (2010)
  19. Bhardwaj R, Mohanty AK, J. Biobased Mater. Bio., 1, 191 (2007)
  20. Gallezot P, Green Chem, 9, 295 (2007)
  21. Wondraczek H, Kotiaho A, Fardim P, Heinze T, Carbohydr. Polym., 83, 1048 (2011)
  22. Wilbon PA, Chu FX, Tang CB, Macromol. Rapid Commun., 34(1), 8 (2013)
  23. Gandini A, Green Chem., 13, 1061 (2011)
  24. Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
  25. Ikada Y, Tsuji H, Macromol. Rapid Commun., 21(3), 117 (2000)
  26. Dechy-Cabaret O, Martin-Vaca B, Bourissou D, Chem. Rev., 104(12), 6147 (2004)
  27. Zhu KJ, Xiangzhou L, Shilin Y, J. Appl. Polym. Sci., 39, 1 (1990)
  28. Qian H, Bei J, Wang S, Polym. Degrad. Stab., 68, 423 (2000)
  29. Cohn D, Hotovely-Salomon A, Polymer, 46(7), 2068 (2005)
  30. SIPOS L, ZSUGA M, DEAK G, Macromol. Rapid Commun., 16(12), 935 (1995)
  31. Frick EM, Hillmyer MA, Macromol. Rapid Commun., 21(18), 1317 (2000)
  32. Frick EM, Zalusky AS, Hillmyer MA, Biomacromolecules, 4(2), 216 (2003)
  33. Yu JM, Dubois P, Jerome R, Macromolecules, 29(26), 8362 (1996)
  34. Zhang S, Hou Z, Gonsalves KE, J. Polym. Sci. A: Polym. Chem., 34(13), 2737 (1996)
  35. Bachari A, Belorgey G, Helary G, Sauvet G, Macromol. Chem. Phys., 196, 411 (1995)
  36. Abe H, Matsubara I, Doi Y, Hori Y, Yamaguchi A, Macromolecules, 27(21), 6018 (1994)
  37. Hiki S, Miyamoto M, Kimura Y, Polymer, 41(20), 7369 (2000)
  38. Pego AP, Van Luyn MJA, Brouwer LA, Van Wachem PB, Poot AA, Grijpma DW, Feijen J, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response, J. Biomed. Mater. Res., 67A, 1044 (2003)
  39. Kim BS, Nikolovski J, Bonadio J, Mooney DJ, Nat. Biotechnol., 17, 979 (1999)
  40. Kim BS, Mooney DJ, J. Biomed. Eng., 122, 210 (2000)
  41. Guerin W, Helou M, Carperntier JF, Slawinski M, Brusson JM, Guillaume SM, Polym. Chem., 4, 1095 (2013)
  42. Kember MR, Copley J, Buchard A, Williams CK, Polym. Chem., 3, 1196 (2012)
  43. Kember MR, Knight PD, Reung PTR, Williams CK, Angew. Chem., Int. Ed., 48, 931 (2009)
  44. Chisholm BJ, Zimmer JG, J. Appl. Polym. Sci., 76(8), 1296 (2000)
  45. Hong SM, Kim MW, Lee DJ, Park KS, Kang TJ, Youn JR, Adv. Compos. Mater., 19, 331 (2010)
  46. Zhou J, Jiang Z, Wang Z, Zhang J, Li J, Li Y, Zhang J, Chen P, Gu Q., RSCAdvances., 3, 18464 (2013)
  47. Ameduri B, Chem. Rev., 109(12), 6632 (2009)
  48. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969)
  49. Lovinger AJ, Science., 220, 1115 (1983)
  50. Voet VSD, van Ekenstein GOR, Meereboer NL, Hofman AH, ten Brinke G, Loos K, Double-crystalline PLLA-b- PVDF-b-PLLA triblock copolymers: preparation and crystallization, Polym. Chem. DOI: 10.1039/c3py01560b (2014)
  51. Anderson KS, Schreck KM, MA Hillmyer, Polym. Rev., 48, 85 (2008)
  52. Honeker CC, Thomas EL, Chem. Mater., 8, 1702 (1996)
  53. Stridsberg K, Albertsson AC, J. Polym. Sci. A: Polym. Chem., 38(10), 1774 (2000)
  54. Sarasua JR, Prud'homme RE, Wisniewski M, Le Borgne A, Spassky N, Macromolecules, 31(12), 3895 (1998)
  55. Cohn D, Salomon AH, Biomaterials., 26, 2297 (2005)
  56. Zhang J, Wang H, Jin W, Li J, Mater. Sci. Eng. C., 29, 889 (2009)
  57. Shin J, Martello MT, Shrestha M, Wissinger JE, Tolman WB, Hillmyer MA, Macromolecules, 44(1), 87 (2011)
  58. Creton C, MRSBull., 28, 434 (2003)
  59. Daoulas KC, Theodorou DN, Roos A, Creton C, Macromolecules, 37(13), 5093 (2004)
  60. Brown K, Hooker JC, Creton C, Macromol. Mater. Eng., 287, 163 (2002)
  61. Martello MT, Hillmyer MA, Macromolecules, 44(21), 8537 (2011)
  62. Hanley KJ, Lodge TP, J. Polym. Sci. B: Polym. Phys., 36(17), 3101 (1998)
  63. Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA, J. Am. Chem. Soc., 124(43), 12761 (2002)
  64. Schmidt SC, Hillmyer MA, J. Polym. Sci. B: Polym. Phys., 40(20), 2364 (2002)
  65. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL, J. Am. Chem. Soc., 128(14), 4556 (2006)
  66. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM, Macromolecules, 43(5), 2093 (2010)
  67. Martello MT, Burns A, Hillmyer MA, ACS Macro Lett., 1, 131 (2012)
  68. Save M, Schappacher M, Soum A, Macromol. Chem., 203, 889 (2002)
  69. van Rossum MWPC, Alberda M, van der Plas LHW, Phytochemistry., 49, 723 (1998)
  70. Kato Y, Yoshida H, Shoji K, Sato Y, Nakajima N, Ogita S, TetrahedronLett., 50, 4751 (2009)
  71. Manzer LE, Appl. Catal. A: Gen., 272(1-2), 249 (2004)
  72. Sauer M, Porro D, Mattanovich D, Branduardi P, Trends Biotechnol., 26, 100 (2008)
  73. Xia Y, Larock RC, Green Chem., 12, 1893 (2010)
  74. Takeda Y, Nakagawa Y, Tomishige K, Catal. Sci. Technol., 2, 2221 (2012)
  75. Toba M, Tanaka S, Niwa S, Mizukami F, Koppany Z, Guczi L, Cheah KY, Tang TS, Appl. Catal. A: Gen., 189(2), 243 (1999)
  76. Dutta P, Gogoi B, Dass NN, Sarma NS, React. Funct. Polym., 73, 457 (2013)
  77. Wong HF, Brown GD, Phytochemistry., 59, 99 (2002)
  78. Akkapeddi MK, Macromolecules., 12, 546 (1979)
  79. Mosnacek J, Matyjaszewski K, Macromolecules, 41(15), 5509 (2008)
  80. Mosnacek J, Yoon JA, Juhari A, Koynov K, Matyjaszewski K, Polymer, 50(9), 2087 (2009)
  81. Jakubowski W, Matyjaszewski K, Angew. Chem. Int. Ed., 45, 4482 (2006)
  82. Min K, Gao HF, Matyjaszewski K, J. Am. Chem. Soc., 127(11), 3825 (2005)
  83. Cavallito CJ, Haskell TH, J. Am. Chem. Soc., 68, 2332 (1946)
  84. Zhang DH, Hillmyer MA, Tolman WB, Biomacromolecules, 6(4), 2091 (2005)
  85. Shin J, Lee Y, Tolman WB, Hillmyer MA, Biomacromolecules, 13(11), 3833 (2012)
  86. Jiang XZ, Vamvakaki M, Narain R, Macromolecules, 43(7), 3228 (2010)
  87. Lee CW, Nakamura S, Kimura Y, J. Polym. Sci. A: Polym. Chem., 50(6), 1111 (2012)
  88. Wanamaker CL, Bluemle MJ, Pitet LM, O'Leary LE, Tolman WB, Hillmyer MA, Biomacromolecules, 10(10), 2904 (2009)
  89. Wang S, Kesava SV, Gomez ED, Robertson ML, Macromolecules., 46, 7202 (2013)
  90. Coelho JFJ, Carvalho EY, Marques DS, Popov AV, Goncalves P M, Gil MH, Macromol. Chem. Phys., 208, 1218 (2007)
  91. Jordan EFJr., J. Polym. Sci., PartA-1: Polym. Chem., 9, 3367 (1971)
  92. Konaganti VK, Madras G, Ind. Eng. Chem. Res., 48(4), 1712 (2009)
  93. Chatterjee DP, Mandal BM, Macromolecules, 39(26), 9192 (2006)
  94. Coates GW, Hillmyer MA, Macromolecules, 42(21), 7987 (2009)
  95. Satoh K, Lee DH, Nagai K, Kamigaito M, Macromol. Rapid Commun., 35, 161 (2014)
  96. Xu YJ, Petrovic Z, Das S, Wilkes GL, Polymer, 49(19), 4248 (2008)
  97. Lebarbe T, Ibarboure E, Gadenne B, Alfos C, Cramail H, Polym. Chem., 4, 3357 (2013)