화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.4, 405-411, April, 2014
Enhanced Thermal Properties of Epoxy Composites by Using Hyperbranched Aromatic Polyamide Grafted Silicon Carbide Whiskers
E-mail:, ,
In this report, we demonstrate that the thermal conductivity, glass transition temperature, thermal stability and dynamical mechanical properties of epoxy composites could all be improved by incorporating hyperbranched aromatic polyamide grafted silicon carbide (SiC-HBP) whiskers, using a solution method. The morphology and thermal properties of these newly modified epoxy composites were systematically analyzed and studied. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermal gravimetric analyses (TGA) proved hyperbranched aromatic polyamide grafted SiC whiskers were successfully prepared by solution polymerization. The thermal conductivity of epoxy composite with 30 wt% of SiC-HBP had 2-fold improvement, compared to that of the neat epoxy. Besides, the glass transition temperatures (Tg) and dynamical mechanical properties of the epoxy composites were also raised by the addition of SiC-HBP, which indicates strong interfacial adhesion between SiC-HBP and the epoxy matrix. Most importantly, the incorporation of SiC-HBP in the epoxy matrix could effectively improve the thermal stability of the epoxy composites, according to our thermogravimetric analysis (TGA).
  1. Teo JKH, Toh CL, Lu XH, Polymer, 52(9), 1975 (2011)
  2. Kozako M, Okazaki Y, Hikita M, Tanaka T, in Solid Dielectrics (ICSD), 2010 10th IEEE International Conference on, Potsdam, DOI:10.1109/ICSD.2010.5568250 (2010)
  3. Kim W, Bae JW, Choi ID, Kim YS, Polym. Eng. Sci., 39(4), 756 (1999)
  4. Hsieh CY, Chung SL, J. Appl. Polym. Sci., 102(5), 4734 (2006)
  5. Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishi K, Watari K, J. Mater. Chem., 20, 2749 (2010)
  6. Yung KC, Liem H, J. Appl. Polym. Sci., 106(6), 3587 (2007)
  7. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C, ACS Nano, 4, 2979 (2010)
  8. Zhou TL, Wang X, Mingyuan GU, Liu XH, Polymer, 49(21), 4666 (2008)
  9. Zhou T, Wang X, Liu X, Xiong D, Carbon, 48, 1171 (2010)
  10. Yang K, Gu M, Compos. Part A: Appl. Sci. Manuf., 41, 215 (2010)
  11. Zhou T, Wang X, Zhu H, Wang T, Compos. Part A: Appl. Sci. Manuf., 40, 1792 (2009)
  12. Zhou TL, Gu MY, Jin YP, Wang JX, Polymer, 46(16), 6174 (2005)
  13. Zhou TL, Gu MY, Jin YP, Wang JX, Polymer, 46(16), 6216 (2005)
  14. Bhattacharya M, Bhowmick AK, Polymer, 49(22), 4808 (2008)
  15. Karul A, Tan KT, White CC, Hunston DL, Marshall ST, Akgun B, Satija SK, Soles CL, Vogt BD, Polymer, 50(14), 3234 (2009)
  16. Korzhenko A, Tabellout M, Emery JR, Polymer, 40(26), 7187 (1999)
  17. Lei YD, Tang ZH, Zhu LX, Guo BC, Jia DM, Polymer, 52(5), 1337 (2011)
  18. Tao FF, Nysten B, Baudouin AC, Thomassin JM, Vuluga D, Detrembleur C, Bailly C, Polymer, 52(21), 4798 (2011)
  19. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K, Polymer, 44(25), 7757 (2003)
  20. Chang SJ, Liao WS, Ciou CJ, Lee JT, Li CC, J. Colloid Interface Sci., 329(2), 300 (2009)
  21. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM, ACS Appl. Mater. Interface, 3, 2184 (2011)
  22. Yu JH, Huang XY, Wu C, Wu XF, Wang GL, Jiang PK, Polymer, 53(2), 471 (2012)
  23. Yu J, Huang X, Wang L, Peng P, Wu C, Wu X, Jiang P, Polym. Chem., 2, 1380 (2011)
  24. Qian R, Yu J, Xie L, Li Y, Jiang P, Polym. Adv. Technol., 24, 348 (2013)
  25. Coleman T, Li Y, SIAM J. Optim., 6, 418 (1996)
  26. Im H, Kim J, J. Mater. Sci., 47(16), 6025 (2012)
  27. Hu Y, Shen J, Li N, Ma H, Shi M, Yan B, Huang W, Wang W, Ye M, Compos. Sci. Technol., 70, 2176 (2010)
  28. Al-Juaid SS, El-Mossalamy EH, Arafa HM, Al-Ghamdi AA, Daiem AMA, El-Tantawy F, J. Appl. Polym. Sci., 121(6), 3604 (2011)
  29. Tagami N, Hyuga M, Ohki Y, Tanaka T, Imai T, Harada M, IEEE Trans. Dielectr. Electr. Insul., 17, 214 (2010)
  30. Kim SH, Lee WI, Park JM, Carbon, 47, 2699 (2009)
  31. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim JK, J. Mater. Chem., 22, 12709 (2012)