Korean Journal of Chemical Engineering, Vol.31, No.5, 905-910, May, 2014
Electrochemical properties of Co-less layered transition metal oxide as high energy cathode material for Li-ion batteries
E-mail:,
High energy nickel manganese cobalt oxide materials (HENMC) are one of the most viable cathode materials for a high energy density lithium ion battery (LIB), but they contain expensive and toxic cobalt (Co). We synthesized Co-free high energy nickel manganese oxide cathode materials (HENM) via a solid state reaction method and a coprecipitation method. Their structural and electrochemical properties were comparatively investigated using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), electron probe micro-analysis (EPMA), particle size analysis (PSA) and electrochemical impedance spectroscopy (EIS). The co-precipitated HENM and the solid state fabricated HENM showed high capacities of 250 mAhg^(-1) and 240 mAhg^(-1), respectively. It suggests that the solid state fabricated method of HENM would be a good candidate for practical application as well as the co-precipitated one.
Keywords:Li Ion Battery;High Capacity;Cathode;Nickel Manganese Oxide;Solid State Method;Co-precipitation
- Ellis BL, Lee KT, Nazar LF, Chem. Mater., 22, 691 (2010)
- Dominko F, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik M, Electrochem. Commun., 8, 217 (2006)
- Doe RE, Persson KA, Meng YS, Ceder G, Chem. Mater., 20, 5274 (2008)
- Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM, J. Mater. Chem., 17, 2069 (2007)
- Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA, J. Mater. Chem., 17, 3112 (2007)
- Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM, Synth. Chem. Mater., 20, 6095 (2008)
- Kang SH, Lu W, Gallagher KG, Park SH, Pol VG, J. Electrochem. Soc., 158, 936 (2011)
- Kim GY, Yi SB, Park YJ, Kim HG, Mater. Res. Bull., 43(12), 3543 (2008)
- Wang QY, Liu J, Murugan AV, Manthiram A, J. Mater. Chem., 19, 4965 (2009)
- Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y, J. Power Sources, 195(2), 567 (2010)
- Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292 (2010)
- Liu J, Manthiram A, J. Mater. Chem., 20, 3961 (2010)
- Liu J, Reeja-Jayan B, Manthram A, J. Phys. Chem. C, 114, 9528 (2010)
- Liu J, Wang Q, Reeja-Jayan B, Manthram A, Electrochem. Commun., 12, 750 (2010)
- Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Gobes G, Markovsky B, Aurbach D, J. Electrochem. Soc., 157, 1121 (2010)
- Park SH, Kang SH, Johnson CS, Amine K, Thackeray MM, Electrochem. Commun., 2, 262 (2007)
- Cabana J, Kang SH, Johnson CS, Thackeray MM, Grey CP, J. Electrochem.Soc., 156, 730 (2009)
- Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Breger J, Shao-Horn Y, Chem. Mater., 17, 2386 (2005)
- Breger J, Jiang M, Dupre N, Meng YS, Shao-Horn Y, Ceder G, Grey CP, J. Solid State Chem., 178, 2575 (2005)
- Massarotti V, Bini M, Capsoni D, Altomare A, Moliterni AGG, J. Appl. Crystallogr., 30, 123 (1997)
- Strobel P, Lambertandron B, J. Solid State Chem., 75, 90 (1988)
- Riou A, Lecerf A, Gerault Y, Cudennec Y, Mater. Res. Bull., 27, 269 (1992)
- Boulineau A, Croguennec L, Delmas C, Weill F, Solid State Ion., 180(40), 1652 (2010)
- Ohzuku T, Makimura Y, Chem. Lett., 7, 642 (2001)
- Deng H, Belharouak I, Cook RE, Wu H, Sun YK, Amine K, J. Electrochem. Soc., 157, 447 (2010)
- Seo HR, Lee EA, Yi CW, Kim KO, J. Electrochem. Sci. Technol., 3, 180 (2011)
- Makimura Y, Ohzuku T, J. Power Sources, 119, 156 (2003)
- Liao PY, Duh JG, Sheu HS, J. Power Sources, 183(2), 766 (2008)
- Yu DYW, Yanagida K, Kato Y, Nakamura H, J. Electrochem. Soc., 156, 417 (2009)
- Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK, J. Power Sources, 162(2), 1346 (2006)
- Hong JH, Seo DH, Kim SW, Gwon HJ, Oh ST, Kang KS, J. Mater. Chem., 20, 10179 (2010)
- Lu Z, Dahn JR, J. Electrochem. Soc., 149, 815 (2002)