Polymer(Korea), Vol.38, No.3, 293-298, May, 2014
Acrylonitrile/Sodium Allylsulfonate 공중합체 방사선 접목을 이용한 다공성 Polytetrafluoroethylene 지지체의 친수화
Hydrophilization of a Porous Polytetrafluoroethylene Supporter by Radiation Grafting Poly(Acrylonitrile-co-Sodium Allylsulfonate)
E-mail:
초록
본 연구에서는 방사선을 이용하여 다공성 polytetrafluoroethylene(PTFE) 지지체에 acrylonitrile(AN)과 친수성 작용기를 가진 sodium allylsulfonate(SAS)를 접목시켜 복합 연료전지막의 지지체로 사용되는 친수화 다공성 지지체를 제조하였다. SAS/AN의 몰비율, 단량체 농도, 방사선의 조사선량에 변화를 주어 제조된 지지체의 물성을 평가하였다. 제조된 지지체의 FTIR 분석을 통하여 각 단량체들이 다공성 PTFE 지지체에 성공적으로 그래프팅되었음을 확인하였다. 또한 FE-SEM과 gurley number 측정을 이용하여 그래프트율이 증가할수록 지지체 표면의 기공이 감소하는 것을 관찰하였고, 그래프트율, 접촉각, TBO(toluidine blue O) uptake 분석을 통해 그래프트율이 증가됨에 따라 제조된 지지체의 친수화도가 증가하는 것을 확인하였다.
We prepared hydrophilic porous supporters for the reinforced composite fuel cell membrane by radiation grafting of acrylonitrile (AN) and hydrophilic sodium allylsulfonate (SAS) into a porous polytetrafluoroethylene (PTFE) supporter. The physicochemical properties of the supporters prepared under various reaction conditions such as molar ratio of SAS/AN, monomer concentration, and irradiation dose were evaluated. FTIR was utilized to confirm the successful
introduction of SAS/AN copolymer chains into the porous PTFE. The pores of the porous PTFE film were found to be decreased with an increase in the degree of grafting by using FE-SEM and gurley number. Furthermore, by analyzing the degree of grafting, contact angle, and TBO (toluidine blue O) uptake, the hydrophilicity of the prepared supporters was found to increase with an increase in the degree of grafting.
- Park DJ, Choi KH, Lee SJ, Shul YG, Lee TH, HWAHAK KONGHAK, 35(1), 21 (1997)
- Yang JH, Park JS, J. Korean Soc. Aeronaut. Space Sci., 39, 400 (2011)
- Kim KH, Ahn SY, Oh IH, Ha HY, Hong SA, Kim MS, Lee Y, Lee YC, Electrochim. Acta, 50(2-3), 577 (2004)
- Tezuka T, Tadanaga K, Matsuda A, Electrochem. Commun., 7, 245 (2005)
- Munakata H, Yamamoto D, Kanamura K, Chem. Commun., 31, 3986 (2005)
- Nguyen T, Wang X, J. Power Sources, 195(4), 1024 (2010)
- Rodgers MP, Berring J, Holdcroft S, Shi ZQ, J. Membr. Sci., 321(1), 100 (2008)
- Nouel KM, Fedkiw PS, Electrochim. Acta, 43(16-17), 2381 (1998)
- Kang ET, Zhang Y, Adv. Mater., 12(20), 1481 (2000)
- Tang HL, Wang XE, Pan M, Wang F, J. Membr. Sci., 306(1-2), 298 (2007)
- Zhu J, Tang HL, Pan M, J. Membr. Sci., 312(1-2), 41 (2008)
- Yu TL, Lin HL, Shen KS, J. Polym. Res., 11, 217 (2004)
- Lin HL, Yu TL, Shen KS, Huang LN, J. Membr. Sci., 237(1-2), 1 (2004)
- Ahn SY, Lee YC, Ha HY, Hong SA, Oh IH, Electrochim. Acta, 50(2-3), 571 (2004)
- Tang HL, Pan M, Jiang SP, Wang X, Ruan YZ, Electrochim. Acta, 52(16), 5304 (2007)
- Zhu X, Zhang H, Liang Y, J. Mater. Chem., 17, 386 (2007)
- Park SH, Kim SJ, Park HJ, Lee JC, Shin BS, Polym.(Korea), 37(1), 1 (2013)
- Chan CM, Ko TM, Surf. Sci. Rep., 24, 1 (1996)
- Chatelier RC, Xie XM, Gengenbach TR, Griesser HJ, Langmuir, 11(7), 2585 (1995)
- Prado A, Briz N, Reinecke H, Analyst, 137, 5666 (2012)
- Sano S, Kato K, Ikada Y, Biomaterials, 14, 871 (1993)
- Zhan X, Wu J, Hinds BJ, Nanoscale Res. Lett., 8, 279 (2013)
- Izumi Z, Kiuchi H, Watanabe M, J. Polym. Sci., 3, 2965 (1965)
- Zu JH, Wu MH, Zhang JQ, Yu CH, Liu XW, Tong L, J. Appl. Polym. Sci., 99(6), 3401 (2006)
- Li R, Wang H, Ye Y, Radiat. Phys. Chem., 91, 132 (2013)
- Kim MH, Ha YM, Khil MS, Tex. Sci. Eng., 49, 402 (2012)
- Shin HK, Jeun JP, Kang PH, Fiber. Polym., 13, 724 (2012)
- Kravchuk LS, Radkevich VZ, Lysenko GN, Fiber. Chem., 35, 134 (2003)
- Nasef MM, Zubir NA, Ismail AF, Khayet M, Dahlan KZM, Saidi H, Rohani R, Ngah TIS, Sulaiman NA, J. Membr. Sci., 268(1), 96 (2006)
- Kang SG, Peck DH, Kim SK, J. Kor. Electrochem. Soc., 12, 173 (2009)