Polymer(Korea), Vol.38, No.3, 327-332, May, 2014
목분의 크기가 폴리프로필렌/목분 복합재료의 물성에 미치는 영향
Effects of Wood Flour Size on the Physical Properties of Polypropylene/Wood Flour Composites
E-mail:
초록
고분자/목분 복합재료는 경제적이고 친환경적이기 때문에 최근 많은 관심을 끌고 있다. 본 연구에서는 목분의 크기가 폴리프로필렌/목분 복합재료의 열적, 기계적 특성에 미치는 영향을 조사하였다. 용융혼합 및 압축성형에 의해 제조된 복합재료 샘플의 기계적 특성을 조사하기 위해 만능재료시험기와 아이조드 충격시험기를 사용하였고, 열적 특성을 조사하기 위해 TGA, DMA, DSC 및 TMA를 사용하였다. 말레산 무수물로 개질된 폴리프로필렌 커플링 제 3종을 테스트하여 최적의 커플링제를 선정하였으며 동일조건 하에서 목분의 크기가 복합재료의 물성에 미치는 영향을 살펴보았다. 600, 250, 180, 150 μm의 네 가지 목분 크기에 대해 실험한 결과 목분의 크기가 작을수록 복합재료의 굴곡강도, 굴곡탄성률, 결정화도 및 내수성이 증가하였다.
Polymer/wood flour composites are recently attracting a lot of interest because they are economic and ecofriendly. In this study, the effects of wood flour size on the thermal and mechanical properties of a polypropylene/wood flour composite were investigated. Mechanical properties of the composite samples prepared by melt-mixing and compression molding were tested by UTM and an izod impact tester, and thermal properties of them were measured by TGA, DMA, DSC and TMA. The best coupling agent was selected by testing three kinds of maleic anhydride modified polypropylene coupling agents, and under the same condition, the effects of wood flour size on the physical properties of the composite were investigated. According to the test results for four different wood flour sizes of 600, 250, 180 and
150 μm, flexural strength, flexural modulus, crystallinity and water-resistivity of the composite increased with decreasing wood flour size.
- Schneider MH, Wood Fiber Sci., 26, 142 (1994)
- Joshi SV, Drzal LT, Mohanty AK, Arora S, Compos. Part A -Appl. Sci. Manuf., 35, 371 (2004)
- Bledzki AK, Reihmane S, Gassan J, Polym.-Plast. Technol. Eng., 37, 451 (1998)
- Yu Y, Yang Y, Murakami M, Nomura M, Hamada H, Adv. Compos. Mater., 22, 425 (2013)
- Zabihzadeh SM, J. Thermoplast. Compos. Mater., 23, 817 (2010)
- Najafi SK, Tajvidi M, Hamidina E, Holz. Roh. Werkst., 65, 377 (2007)
- Ahn SH, Kim DS, Polym.(Korea), 37(2), 204 (2013)
- Park BD, Balatinecz JJ, J. Thermoplast. Compos. Mater., 9, 342 (1996)
- Rozman HD, Lai CY, Ismail H, Ishak Z, Polym. Int., 49, 1273 (2000)
- Joseph K, Thomas S, Pavithran C, Polymer, 37(23), 5139 (1996)
- Hristov VN, Loch R, Grellmann W, Polym. Test., 23, 581 (2004)
- Wang Y, Cao J, Zhu L, Wood Fiber Sci., 43, 262 (2011)
- George J, Sreekala MS, Thomas S, Polym. Eng. Sci., 41(9), 1471 (2001)
- Park B, Kim DS, Polym.(Korea), 35(2), 124 (2011)
- Gassan J, Compos. Part A -Appl. Sci. Manuf., 33, 369 (2002)
- Ozdemir T, Mengeloglu F, Int. J. Mol. Sci., 9(12), 2559 (2008)
- La Mantia FP, Morreale M, Polym. Eng. Sci., 46(9), 1131 (2006)
- Espert A, Camacho W, Karlson S, J. Appl. Polym. Sci., 89(9), 2353 (2003)
- Stark NM, Matuana LM, J. Appl. Polym. Sci., 94(6), 2263 (2004)
- Maldhure AV, Chaudhari AR, Ekhe JD, J. Therm. Anal. Calorim., 103, 625 (2011)
- Haque MM, Ali ME, Hasan M, Islam MN, Kim H, Ind. Eng. Chem. Res., 51(10), 3958 (2012)
- Touati N, Kaci M, Bruzaud S, Grohens Y, Polym. Degrad. Stab., 96, 1064 (2011)
- Nasir A, Yasin T, Islam A, J. Appl. Polym. Sci., 119(6), 3315 (2011)
- Reichert P, Kressler J, Thomann R, Mllhaupt R, Stppelmann G, Acta Polym. Sin., 49, 116 (1998)
- Zhang S, Horrocks AR, Prog. Polym. Sci., 28, 1517 (2003)
- Bourbigot S, Gilman JW, Wilkie CA, Polym. Degrad. Stab., 84, 483 (2004)
- Gong F, Feng M, Zhao C, Zhang S, Yang M, Polym. Degrad. Stab, 84, 289 (2004)
- Qin HL, Su QS, Zhang SM, Zhao B, Yang MS, Polymer, 44(24), 7533 (2003)
- Marosi G, Mrton A, Szp A, Csontos I, Keszei S, Zimonyi E, Polym. Degrad. Stab., 82, 379 (2003)
- Beyer G, Plastics, Additives and Compounding, 10, 22 (2002)
- Camacho W, Karlsson S, Polym. Degrad. Stab., 78, 385 (2002)
- Joseph PV, Joseph K, Thomas S, Pillaic CKS, Prasad VS, Groeninckx G, Sarkissova M, Compos. Part A-Appl. Sci. Manuf., 34, 253 (2003)