화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.3, 262-267, June, 2014
고온 고압 스팀을 주입하는 SAGD 공정에서 CO2주입이 오일샌드 역청 회수율에 미치는 영향
Effect of CO2 Injection in SAGD Process for Oil Sand Bitumen Recovery
E-mail:
초록
오일샌드에서 비투맨(bitumen)을 회수하는 지하회수방식 중 가장 많이 사용하는 기술인 SAGD (steam assisted gravity drainage)공정으로부터 비투맨의 회수율을 향상시키고자 스팀과 함께 주입한 첨가제의 효과와 매커니즘에 대해서 연구하였다. 실제 광구에서 쓰이는 SAGD공정을 150 : 1로 축소한 실험실 규모의 모사장비가 사용되었으며, 지하 박층을 모사할 수 있는 장치(이하 GM, geological model)가 사용되었다. 초중질유와 글래스비드(glass bead 1.5 mm)의 혼합물은 오일샌드의 모사재료로 사용되었다. 첨가제로서 CO2가 사용되었으며, 스팀 챔버(steam chamber)의 성장 변화를 비교분석하였다. CO2의 주입방식에 따른 효과를 확인하기 위하여 스팀과 CO2를 연속 주입하는 실험(cCO2-SAGD)과 순차적으로 주입하는 실험(sCO2-SAGD)을 실시하였다. 그 결과 sCO2-SAGD 실험의 경우 Control 실험 대비 오일 회수율은 60.2%에서 69.3%로 향상되었으며 cSOR의 경우 7.1에서 6.0으로 낮아졌다. 반면에 cCO2-SAGD 실험의 경우 60.2%에서 57.6%, 7.1에서 7.3으로 증가 되었다.
SAGD (steam assisted gravity drainage) process is the most commonly used in-situ technology for the recovery of bitumen from oil sand. It was investigated that the effects of different additives on bitumen recovery rate from oil sand in SAGD process among many possible mechanisms studied throughout the study. Bitumen recovery from thin layer oil sand reservoirs was simulated by using an experimental SAGD apparatus with scale of 150:1. To improve the simulation accuracy of thin layer oil reservoir, we have attached geological model (GM). Oil sand was simulated by using a mixture of extra heavy oil and glass beads with a diameter of 1.5 mm. CO2 was used as an additive and the evolution of steam chambers were closely monitored, and the effects of CO2 as an additive was investigated. Two types of injection methods were tested; continuous(cCO2-SAGD) and sequential interruption (sCO2-SAGD) CO2 injection. For the sCO2-SAGD experiment, it was observed that the recovery rates and CSOR were efficiently improved control experiment from 60.2% to 69.3% and 7.1 to 6.0, respectively, whereas cCO2-SAGD experiment decreased from 60.2% to 57.6% and 7.1 to 7.3.
  1. Gates ID, Chakrabarty N, J. Can. Pet. Technol., 47(9), 12 (2008)
  2. Lee KB, Jeon SG, Nho NS, Kim KH, Shin DH, Kim SW, Kim YH, J. Korean Ind. Eng. Chem., 19(6), 592 (2008)
  3. Park K, Han SD, Han HJ, Kang KS, Bae W, Rhee YW, Clean Technol., 15(3), 210 (2009)
  4. Lee JK, Ko HC, Regional Economic Focus, 1, 1 (2007)
  5. Park YK, Choi WC, Jeong SY, Lee CW, Korean Chem. Eng. Res., 45(2), 109 (2007)
  6. Kwon YK, Korean Jour. of Petrol. Geol., 14, 1 (2008)
  7. Yoon SH, You NS, Upare DP, Lee CW, Improved method for recovery and upgrading of oil sand, KR Patent 1,020,130,028,743 (2013)
  8. Butler RM, J. Can. Pet. Technol., 24, 42 (1985)
  9. Sasaki K, Akibayashi S, Yazawa N, Doan QT, Ali SM, SPE. J., 6, 89 (2001)
  10. Shin JS, Sun YK, Park YC, Bae DH, Jo SH, Shun D, Korean Chem. Eng. Res., 48(1), 68 (2010)
  11. Yoon SH, You NS, Lee CW, Method for recovering bitumen from oil sand by injecting gas, KR Patent 1,020,130,128,228 (2013)
  12. Steve K, Gary B, Fuel gas injection for heavy oil recovery, U.S Patent 7,341,102 (2008)
  13. Halim TA, Murugesan S, Field upgrading of heavy oil and bitumen, U.S Patent 6,357,526 (2002)
  14. Bagci AS, Sotuminu OG, Mackay EJ, SPE. J., 11, 32 (2008)
  15. Sullivan AP, Kilpatrick PK, Ind. Eng. Chem. Res., 41(14), 3389 (2002)
  16. Zaki NN, Kilpatrick PK, Carbonell RG, Methods of demulsifying emulsions using carbon dioxide, US Patent 6,566,410 (2003)
  17. You N, Yoon S, Lee W, Lee HY, Park SY, Shim JH, Kim JS, Lee CW, Korean J. Chem. Eng., 27(6), 1718 (2010)
  18. You N, Yoon S, Lee CW, J. Ind. Eng. Chem., 18(6), 2051 (2012)
  19. Song BJ, You N, Kim JM, Lee CW, Appl. Chem. Eng., 25(1), 113 (2014)