Applied Chemistry for Engineering, Vol.25, No.3, 281-285, June, 2014
호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발
Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation
E-mail:
초록
호기성 벤질 알코올 산화반응용 촉매로 팔라듐이 담지된 이산화티타늄 입자를 제조하였다. 우선 합성한 이산화티타늄 입자에 10 wt% 팔라듐을 함침한 후, 다양한 온도에서 소성하여 촉매를 제조하였다. 촉매의 비표면적은 소성온도에 따라 변하였는데, 300 ℃에서 소성한 촉매의 비표면적이 가장 높게 측정되었다. 제조된 촉매의 반응 결과 300 ℃에서 소성한 입자가 가장 우수한 반응성능을 보였다. 또한 팔라듐의 농도를 5 wt%에서 15 wt%까지 조절하여 함침한 후 300 ℃에서 소성하여 촉매를 합성하였다. 팔라듐의 농도가 10 wt%인 Pd/TiO2 입자가 벤질알코올 산화반응에 최적의 촉매로 규명되었다. 이는 상대적으로 높은 촉매의 비표면적 및 팔라듐 분산도에 기인한다.
Pd/TiO2 particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on TiO2 after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at 300 ℃ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, Pd/TiO2 calcined at 300 ℃ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% Pd/TiO2 was the most active in this reaction due to its higher surface areas and metal dispersion.
- Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157 (2000)
- Sheldon RA, Arends IWCE, Brink GJT, Dijksman A, Acc. Chem. Res., 35, 774 (2002)
- Sheldon RA, Kochi JK, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981)
- Stevens RV, Chapman KT, Weller HN, J. Org. Chem., 45, 2030 (1980)
- Holum JR, J. Org. Chem., 26, 4814 (1961)
- Lee DG, Spitzer UA, J. Org. Chem., 35, 3589 (1970)
- Highet RJ, Wildman WC, J. Am. Chem. Soc., 77, 4399 (1955)
- Menger FM, Lee C, Tetrahedron Lett., 22, 1655 (1981)
- Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 122(29), 7144 (2000)
- Nishimura T, Onoue T, Ohe K, Uemura S, J. Org. Chem., 64, 6750 (1999)
- Hasan M, Musawir M, Davey PN, Kozhevnikov IV, J. Mol. Catal. A-Chem., 180(1-2), 77 (2002)
- Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(34), 10657 (2004)
- Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem. Int. Ed., 44, 4066 (2005)
- Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
- Arcadi A, Giuseppe SD, Curr. Org. Chem., 8, 795 (2004)
- Tian ZQ, Ren B, Wu DY, J. Phys. Chem. B, 106(37), 9463 (2002)
- Vonmatt P, Pfaltz A, Angew. Chem. Int. Ed., 32, 566 (1993)
- Astruc D, Lu F, Aranzaes JR, Angew. Chem. Int. Ed., 44, 7852 (2005)
- Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis, fundamentals and applications, Bkc Inc., Tokyo (1999)
- Fernandez-Garcia M, Martinez-Arias A, Salamanca LN, Coronado JM, Anderson JA, Conesa JC, Soria J, J. Catal., 187(2), 474 (1999)
- Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164 (2002)
- Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA, Acc. Chem. Res., 36, 20 (2003)
- Narayanan R, El-Sayed MA, Nano Lett., 4, 1343 (2004)
- Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P, Nat. Mater., 6(9), 692 (2007)
- Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA, Nano Lett., 7, 3097 (2007)
- Wang C, Daimon H, Onodera T, Koda T, Sun S, Angew. Chem, Int. Ed., 47, 3588 (2008)