화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.3, 281-285, June, 2014
호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발
Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation
E-mail:
초록
호기성 벤질 알코올 산화반응용 촉매로 팔라듐이 담지된 이산화티타늄 입자를 제조하였다. 우선 합성한 이산화티타늄 입자에 10 wt% 팔라듐을 함침한 후, 다양한 온도에서 소성하여 촉매를 제조하였다. 촉매의 비표면적은 소성온도에 따라 변하였는데, 300 ℃에서 소성한 촉매의 비표면적이 가장 높게 측정되었다. 제조된 촉매의 반응 결과 300 ℃에서 소성한 입자가 가장 우수한 반응성능을 보였다. 또한 팔라듐의 농도를 5 wt%에서 15 wt%까지 조절하여 함침한 후 300 ℃에서 소성하여 촉매를 합성하였다. 팔라듐의 농도가 10 wt%인 Pd/TiO2 입자가 벤질알코올 산화반응에 최적의 촉매로 규명되었다. 이는 상대적으로 높은 촉매의 비표면적 및 팔라듐 분산도에 기인한다.
Pd/TiO2 particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on TiO2 after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at 300 ℃ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, Pd/TiO2 calcined at 300 ℃ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% Pd/TiO2 was the most active in this reaction due to its higher surface areas and metal dispersion.
  1. Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157 (2000)
  2. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A, Acc. Chem. Res., 35, 774 (2002)
  3. Sheldon RA, Kochi JK, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981)
  4. Stevens RV, Chapman KT, Weller HN, J. Org. Chem., 45, 2030 (1980)
  5. Holum JR, J. Org. Chem., 26, 4814 (1961)
  6. Lee DG, Spitzer UA, J. Org. Chem., 35, 3589 (1970)
  7. Highet RJ, Wildman WC, J. Am. Chem. Soc., 77, 4399 (1955)
  8. Menger FM, Lee C, Tetrahedron Lett., 22, 1655 (1981)
  9. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 122(29), 7144 (2000)
  10. Nishimura T, Onoue T, Ohe K, Uemura S, J. Org. Chem., 64, 6750 (1999)
  11. Hasan M, Musawir M, Davey PN, Kozhevnikov IV, J. Mol. Catal. A-Chem., 180(1-2), 77 (2002)
  12. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(34), 10657 (2004)
  13. Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem. Int. Ed., 44, 4066 (2005)
  14. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
  15. Arcadi A, Giuseppe SD, Curr. Org. Chem., 8, 795 (2004)
  16. Tian ZQ, Ren B, Wu DY, J. Phys. Chem. B, 106(37), 9463 (2002)
  17. Vonmatt P, Pfaltz A, Angew. Chem. Int. Ed., 32, 566 (1993)
  18. Astruc D, Lu F, Aranzaes JR, Angew. Chem. Int. Ed., 44, 7852 (2005)
  19. Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis, fundamentals and applications, Bkc Inc., Tokyo (1999)
  20. Fernandez-Garcia M, Martinez-Arias A, Salamanca LN, Coronado JM, Anderson JA, Conesa JC, Soria J, J. Catal., 187(2), 474 (1999)
  21. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164 (2002)
  22. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA, Acc. Chem. Res., 36, 20 (2003)
  23. Narayanan R, El-Sayed MA, Nano Lett., 4, 1343 (2004)
  24. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P, Nat. Mater., 6(9), 692 (2007)
  25. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA, Nano Lett., 7, 3097 (2007)
  26. Wang C, Daimon H, Onodera T, Koda T, Sun S, Angew. Chem, Int. Ed., 47, 3588 (2008)