Korean Journal of Chemical Engineering, Vol.31, No.7, 1174-1179, July, 2014
Hydrogenolysis of nitrosodimethyl amine in gas phase over Au/γ-Al2O3 nanocatalyst
E-mail:
Nitrosodimethyl amine (NDMA), as a carcinogenic byproduct in production of unsymmetrical dimethyl hydrazine (UDMH) in space industries, should be decomposed in the vapor phase. A suitable method for this purpose is selective catalytic hydrogenolysis of NDMA over Au/γ-Al2O3 nanocatalyst. We synthesized and characterized the Au/γ-Al2O3 nanocatalyst by homogeneous deposition-precipitation (HDP)/DP-urea method. Activity of the catalyst was influenced by nanosized Au particles, Au loading and the bed temperature. The optimum parameters for the catalyst were: Au particles <5 nm, Au loading at 1.5 wt% and bed temperature of 35-45 ℃. The reaction was strongly sensitive to the Au particle size. The reaction occurred over the catalyst to produce dimethyl amine (DMA) and nitroxyl in a selective manner. The kinetics of NDMA hydrogenolysis over the nanocatalyst was studied in an integral fixed bed reactor. There existed a consistency with the Langmuir-Hinshelwood mechanism involving dissociative adsorption of H2 and NDMA.
- Schmidt EW, Hydrazine and its derivatives (2nd Ed.), Wiley, New York (2001)
- Xu H, N-Nitrosamines in the environment, Science Press, Beijing (1988)
- Xu BB, Chen ZL, Qi F, Ma J, Wu FC, J. Hazard. Mater., 168(1), 108 (2009)
- Lee J, Choi W, Yon J, Environ. Sci. Technol., 39, 6800 (2005)
- Sharma VK, Sep. Purif. Technol., 88, 1 (2012)
- Gui L, Gillham RW, Odziemkowski MS, Environ. Sci. Technol., 34, 3489 (2000)
- Davie MG, Reinhard M, Shapley JR, Environ. Sci. Technol., 40, 7329 (2006)
- Smith GV, Notheisz F, Heterogeneous catalysis in organic chemistry, Academic Press, New York (1999)
- Haruta M, Catal. Surv. Jpn., 1, 61 (1997)
- Santos LL, Serna P, Corma A, Chem. Eur. J., 15, 8196 (2009)
- Corma A, Serna P, Science, 313, 332 (2006)
- Pakdehi SG, Sohrabi M, Chem. Eng. Technol., 34(11), 1840 (2011)
- Hugon A, Delannoy L, Krafft JM, Louis C, J. Phys. Chem. C, 114, 10823 (2010)
- Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM, Biochem. J., 379, 359 (2004)
- Shafirovich V, Lymar SV, Proceedings of the National Academy of Sciences, 99, 7340 (2002)
- Greenwood NN, Earnshaw A, Chemistry of the elements, Elsevier, Oxford (1997)
- Kartusch C, van Bokhoven JA, Gold Bull., 42, 343 (2009)
- Bond GC, Thompson DT, Catal. Rev.-Sci. Eng., 41(3-4), 319 (1999)
- McEwana L, Juliusa M, Robertsa S, Fletchera JCQ, Gold Bull., 43, 298 (2010)
- Hussain A, A computational study of catalysis by gold in applications of CO oxidation, Ph.D. Thesis, Eindhoven: Technische Universiteit Eindhoven (2010)
- Comotti M, Nano-design as a powerful tool in gold catalyzed oxidation reactions, Ph.D. Thesis, Bochum: Universitat Bochum (2007)
- Okumura M, Akita T, Haruta M, Catal. Today, 74(3-4), 265 (2002)
- Huang D, Liao F, Molesa S, Redinger D, Subramanian V, J. Electrochem. Soc., 150, 412 (2003)
- Perego C, Peratello S, Catal. Today, 52(2-3), 133 (1999)
- Ishida T, Kawakita N, Akita T, Haruta M, Gold Bull., 42, 267 (2009)
- Aufray M, Roche AA, Appl. Surf. Sci., 254, 1936 (2007)