화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.4, 441-448, July, 2014
H2O로 발포된 멜라민포스페이트-폴리우레탄폼 복합체 합성과 열적 특성 분석
Synthesis of Melamine Phosphate-Polyurethane Composite Foam Blown by Water and Characterization of Its Thermal Properties
E-mail:
초록
멜라민포스페이트(MP)가 분산된 폴리우레탄폼 복합체(MP-PUF)를 만들고, MP-PUF의 모폴로지, 독립기포율, 열전도율, 열분해온도 등을 분석하였다. MP-PUF는 MP가 분산된 폴리아디페이트디올(f=2), 폴리에테르-폴리올(f=4.6)과 PMDI(f=2.5)를 원료로 사용하고 발포제로 H2O 양을 변화시키며 제조하였다. 폴리우레탄폼의 MP 함량은 1.43±0.30 wt%로 고정하였다. H2O의 양이 증가할수록 순수한 폴리우레탄폼(PUF)의 열전도율은 낮아지고 MP-PUF의 열전도율은 커졌다. PUF와 MP-PUF의 열안정성은 H2O 양이 5 php에서 최대가 되었다가 그 이상에서는 낮아졌다. 특히, MP-PUF는 발포과정에 생성된 우레아기와 MP의 영향으로 열안정성이 크게 향상되어 MP-PUF의 잔량이 50%가 되는 온도가 370~450 ℃, 잔량이 30%가 되는 온도는 700 ℃ 이상으로 PUF에 비하여 각각 25, 70 ℃ 이상 높아졌다.
Polyurethane/melamine phosphate composite foam (MP-PUF) was prepared from poly(adipate)diol/melamine phosphate composite (f=2), polyether-polyol (f=4.6), and PMDI (f=2.5). The thermal properties of MP-PUF such as morphology, closed-cell content, thermal conductivity, and thermal stabilities were characterized. Water was used as a blowing agent, and the composition of melamine phosphate (MP) was maintained at 1.43±0.3 wt% of MP-PUF. As the content of water increased, the thermal conductivity of pure polyurethane foam (PUF) decreased, whereas the thermal conductivity of MP-PUF increased. The thermal stabilities of the PUF and the MP-PUF were maximized at 5 php H2O, and then decreased at the higher H2O contents. The thermal stabilities of MP-PUF were greatly enhanced due to the synergetic effect of MP and urea, which was generated during the blowing process. The temperature of 50% residual mass of MP-PUF increased to 370~450 ℃ and the temperature of 30% residual mass exceeded over 700 ℃. Compared to the PUF, the temperature of 50% residual mass and 30% residual mass were higher than 25 and 70 ℃, respectively.
  1. Kim SS, Park JN, Polym. Sci. Technol., 10(5), 614 (1999)
  2. Jarfelt U, Ramnas O, The 10th International Symposium on District Heating and Cooling, September 3-5, Hanover (2006)
  3. Lim H, Kim SH, Kim BK, J. Appl. Polym. Sci., 110(1), 49 (2008)
  4. Lim H, Kim SH, Kim BK, Polym. Adv. Technol., 19, 1729 (2008)
  5. Kim SH, Lee MC, Kim HD, Park HC, Jeong HM, Yoon KS, Kim BK, J. Appl. Polym. Sci., 117(4), 1992 (2010)
  6. Seo WJ, Sung YT, Kim SB, Lee YB, Choe KH, Choe SH, Sung JY, Kim WN, J. Appl. Polym. Sci., 102(4), 3764 (2006)
  7. Saha MC, Kabir ME, Jeelani S, Mater. Sci. Eng. A, 479, 213 (2008)
  8. Kim CB, Seo WJ, Kwon OD, Kim SB, Appl. Chem. Eng., 22(5), 540 (2011)
  9. Lorenzetti A, Modesti M, Besco S, Hrelja D, Danadi S, Polym. Degrad. Stabil., 96, 1455 (2011)
  10. Park KK, Lee SH, Elastom. Compos., 46, 343 (2011)
  11. Shufen L, Zhi J, Kaijun Y, Shuqin Y, Polym. Plast. Technol. Eng., 45, 95 (2006)
  12. Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK, Polym. Degrad. Stabil., 95, 1138 (2010)
  13. Morgan AB, Wilkie CA, Flame Retardant Polymer Nanocomposites, John Wiley & Sons Inc, New Jersey, USA (2007)
  14. Camino G, Costa L, Martinasso G, Polym. Degrad. Stabil., 23, 359 (1989)
  15. Bourbigot S, Bras ML, Delobel R, Brant P, Trmillon JM, Carbon, 33, 283 (1995)
  16. Jahromi S, Gabrielse W, Braam A, Polymer, 44(1), 25 (2003)