화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1223-1226, July, 2014
Novel spherical TiO2 supported PdNi alloy catalyst for methanol electroxidation
E-mail:,
A novel PdNi/TiO2 electrocatalyst for methanol oxidation is fabricated using spherical TiO2 nanoparticles as support. The structural and electrochemical properties of the PdNi/TiO2 catalyst are characterized by XRD, TEM and electrochemical analysis. The cyclic voltammograms of PdNi/TiO2 catalyst show that there is a large methanol oxidation peak in about 0.882 V that is much bigger than that of the commercial PtRu/C catalyst in 0.7 V. The composite TiO2 material has high catalytic activity without UV light illumination. The electrocatalytic activity and anti-poisoning capability of the PdNi/TiO2 catalyst are promising, which may become a potential candidate for direct methanol fuel cell.
  1. Chen SZ, Ye F, Lin WM, Int. J. Hydrog. Energy, 30(15), 8225 (2010)
  2. Xue XD, Gu L, Cao XB, Song YY, Zhu LW, Chen P, J. Solid State Chem., 182(10), 2912 (2009)
  3. Wang M, Guo DJ, Li HL, J. Solid State Chem., 178(6), 1996 (2005)
  4. Guo X, Guo DJ, Qiu XP, Chen LQ, Zhu WT, J. Power Sources, 194(1), 281 (2009)
  5. Chen JM, Sarma LS, Chen CH, Cheng MY, Shih SC, Wang GR, Liu DG, Lee JF, Tang MT, Hwang BJ, J. Power Sources, 159(1), 29 (2006)
  6. Tian J, Sun GQ, Jing LH, Yan SY, Mao Q, Xin Q, Electrochem. Commun., 9(4), 563 (2007)
  7. Kim HJ, Kim DY, Han H, Shul YG, J. Power Sources, 159(1), 484 (2006)
  8. Yoo SJ, Jeon TY, Cho YH, Lee KS, Sung YE, Electrochim. Acta, 55(27), 7939 (2010)
  9. Drew K, Girishkumar G, Vinodgopal K, Kamat PV, J. Phys. Chem. B, 109(24), 11851 (2005)
  10. Park KW, Lee YW, Oh JK, Kim DY, Han SB, Ko AR, Kim SJ, Kim HS, J. Ind. Eng. Chem., 17(4), 696 (2011)
  11. Hosseini MG, Momeni MM, Electrochim. Acta, 70, 1 (2012)
  12. Wang XY, Zhang JC, Zhu H, Chin. J. Catal., 32, 74 (2011)
  13. Ju JF, Shi YJ, Wu DH, Powder Technol., 230, 252 (2012)
  14. Ju JF, Wu DH, Ge CW, Shi YJ, J. Power Sources, 195(11), 3472 (2010)
  15. Zhang JW, Fu DF, Gao HY, Deng L, Appl. Surf. Sci., 258(4), 1294 (2011)
  16. Riaz N, Chong FK, Dutta BK, Man ZB, Khan MS, Nurlaela E, J. Chem. Eng., 185-186, 108 (2012)
  17. Huang SY, Yeh CT, J. Power Sources, 195(9), 2638 (2010)
  18. Guo DJ, Li HL, J. Electroanal. Chem., 573(1), 197 (2004)
  19. He Z, Chen J, Liu D, Zhou H, Kuang Y, Diam. Relat. Mat., 13, 1764 (2004)
  20. Sun ZP, Zhang XG, Liang YY, Li HL, Electrochem. Commun., 11, 557 (2009)
  21. Honda K, Yoshimura M, Rao TN, Tryk DA, Fujishima A, Yasui K, Sakamoto Y, Nishio K, Masuda H, J. Electroanal. Chem., 514(1-2), 35 (2001)
  22. Cao DX, Bergens SH, J. Power Sources, 134(2), 170 (2004)
  23. Lizcano-Valbuena WH, Paganin VA, Leite CAP, Galembeck F, Gonzalez ER, Electrochim. Acta, 48(25-26), 3869 (2003)
  24. Doong R, Chang W, J. Photochem. Photobiol. A-Chem., 107, 239 (1997)
  25. Jing LQ, Wang DJ, Wang BQ, Li SD, Xin BF, Fu HG, Sun JZ, J. Mol. Catal. A-Chem., 244(1-2), 193 (2006)
  26. Zhao YC, Yang XL, Tian JN, Wang FY, Zhan L, Int. J. Hydrog. Energy, 35(8), 3249 (2010)
  27. Kumar KS, Haridoss P, Seshadri SK, Surf. Coat. Technol., 202, 1764 (2008)
  28. Qi Z, Geng HR, Wang XG, Zhao CC, Ji H, Zhang C, Xu JL, Zhang ZH, J. Power Sources, 196(14), 5823 (2011)
  29. Blanco TC, Pierna AR, Barroso J, J. Power Sources, 196(9), 4337 (2011)
  30. Miao FJ, Tao BR, Electrochim. Acta, 56(19), 6709 (2011)