화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1373-1381, July, 2014
Selective recovery of valuable metals from partial silicated sphalerite at elevated temperature with sulfuric acid solution
E-mail:
The purpose of this work was to study the feasibility at laboratory-scale of a hydrometallurgical process for the selective recovery of valuable metals from partial silicated sphalerite in an oxygen pressure acid leaching system. The factors influencing dissolution efficiency of the ore were investigated and optimized. Under optimum conditions (i.e., temperature of 433 K, sulfuric acid concentration of 41.2 g/L, leaching time of 2.5 h, liquid/solid ratio of 6 mL/g, and pressure of 1.6 MPa) over 97% Zn was extracted into the leach liquor together with 0.3% SiO2 and 2.9% Pb. The leaching slurry had good solid.liquid separation characteristics, and the filtration rate could be as high as 716 L/m2 h. About 96% oxidation of sulfide sulfur to sulfate was achieved under these conditions. Analysis of the content of elemental sulfur in the leaching residues indicated that the fraction of sulfide sulfur determined as elemental sulfur was about 10% at 393 K, and that it decreased with temperature down to 0.5% at 453 K. Ultimate solid residues, which have been concentrated in silica and lead, can be oriented toward the lead smelter after alkali roasting-water washing pretreatment for metal recovery.
  1. Sandstrom A, Petersson S, Hydrometallurgy, 46(1/2), 181 (1997)
  2. Chen DX, Yang JW, Li GQ, Zeng HM, Nonferrous Met., 6, 1 (2009)
  3. Labonte G, Leroux M, Sandoval I, Rao SR, Finch JA, in: Dobby GS, Rao SR (Eds.), Processing of Complex Ores, Proceedings of the International Symposium on Processing of Complex Ores, Pergamon Press, New York, 1989, p. 193.
  4. Bulatovic S, Wyslouzil DM, Miner. Eng., 8(1/2), 63 (1995)
  5. Yuan XM, Palsson BI, Forssberg KSE, Int. J. Miner. Process., 46(3/4), 155 (1996)
  6. Duan XM, Lou L, Miner. Metall., 4, 47 (2000)
  7. Jiang MH, Yang SZ, Yang JY, Nonfeffous Met., 3, 5 (2007)
  8. Cilek EC, Int. J. Miner. Process., 90(3), 35 (2009)
  9. Olubambi PA, Ndlovu S, Potgieter JH, Borode JO, Int. J. Miner. Process., 87(3/4), 83 (2008)
  10. Chaudhury GR, Das RP, Int. J. Miner. Process., 21, 57 (1987)
  11. Misra VN, Miner. Process. Extr. Metall. Rev., 9(1-4), 223 (1992)
  12. Godocikova E, Balaz P, Boldizarova E, Hydrometallurgy, 65(1), 83 (2002)
  13. Akcil A, Ciftci H, Int. J. Miner. Process., 71(1-4), 233 (2003)
  14. Olubambi PA, Borode JO, Ndlovu S, J. S. Afr. Inst. Min. Metall., 106, 765 (2006)
  15. Liang DQ, Wang JK, Wang YH, Jiang JB, Wang F, Int. J. Miner. Process., 89(1-4), 60 (2008)
  16. Olubambi PA, Hydrometallurgy, 95, 159 (2009)
  17. Veltman H, Bolton GL, Erzmetallurgy, 33(2), 76 (1980)
  18. Johnston BH, Doyle BN, Miner. Metall. Process., 1, 1 (1986)
  19. Harvey TJ, Yen WT, Paterson JG, Miner. Eng., 6(8-10), 949 (1993)
  20. Jankola WA, Hydrometallurgy, 39, 63 (1995)
  21. Xie KQ, Yang XW, Wang JK, Yan JF, Shen QF, Trans. Nonferrous Met. Soc. China, 17(1), 187 (2007)
  22. Gu Y, Zhang TA, Liu Y, Mu WZ, Zhang WG, Dou ZH, Jiang XL, Trans. Nonferrous Met. Soc. China, 20, 136 (2010)
  23. Li CX, Xu HS, Deng ZG, Li XB, Li MT, Wei C, Trans. Nonferrous Met. Soc. China, 20(5), 918 (2010)
  24. He S, Wang JK, Yan JF, Hydrometallurgy, 104(2), 235 (2010)
  25. Zhang XP, Zhou XY, Wang SQ, Fa KQ, Min. Metall., 4(3), 38 (1995)
  26. Zeng LX, Zhang AC, Huang YQ, Multipurp. Util. Miner. Resour, 4, 23 (2009)
  27. Heimala SO, U.S. Pat. No. 4,483,827, 1984
  28. Chang FK, Yunnan Metall., 24(1), 36 (1995)
  29. Peng P, Xie HQ, Lu LZ, Hydrometallurgy, 80, 265 (2005)
  30. The Test Institute of Beijing General Research Institute of Mining & Metallurgy, Nonferrous Metallurgy Analysis Manual, Metallurgical Industry Press, Beijing, 2008 (in Chinese).
  31. Zhang HB, Chemical Phase Analysis of Ore and Industrial Product, Metallurgical Industry Press, Beijing, 1992, pp. 344.353 (in Chinese).
  32. Crockford HD, Brawley DJ, JACS, 56(12), 2600 (1934)
  33. Scott TR, in: Evans DJI, Shoemaker RS (Eds.), International Symposium on Hydrometallurgy, AIME, New York, 1973, p. 718.
  34. Bolorunduro SA, Dreisinger DB, Van Weert G, Miner. Eng., 16(4), 375 (2003)
  35. Habashi F, Bauer EL, Ind. Eng. Chem. Fundam., 5(4), 469 (1966)
  36. Corriou JP, Kikindai T, J. Inorg. Nucl. Chem., 43, 9 (1981)
  37. Cobble JW, Murray RC, Turner RJ, Chen K, High-temperature thermodynamic data for species in aqueous solution, in: EPRI Report NP-2400, Electric Power Research Institute, Palo Alto, CA, 1982.
  38. Marcus P, Protopopoff E, J. Electrochem. Soc., 140(6), 1571 (1993)
  39. Malcolm W, Chase, J. Phys. Chem. Ref Data, 9 (1998)
  40. Corriou JP, Gely R, Viers P, Hydrometallurgy, 21(1), 85 (1988)
  41. Iler RK, The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York, 1955p. 92.
  42. Dufresne RE, J. Met., 28(2), 8 (1976)
  43. Hua Y, Lin Z, Yan Z, Miner. Eng., 15(6), 451 (2002)
  44. Dutrizac JE, Dinardo O, Hydrometallurgy, 11(1), 61 (1983)