Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 2452-2462, July, 2014
Simultaneous ammonium nitrate decomposition and NOx emission reduction in a novel configuration of membrane reactor: A simulation study
E-mail:
In thermal decomposition process, ammonium nitrate decomposition takes place in fluidized bed
reactor (FR) and nitrogen oxide (NOx), as an undesirable product is produced in high temperatures. In this study, two novel configurations named membrane fluidized bed reactor (MFR) and free air membrane fluidized bed reactor (AMFR) is proposed to reduce NOx emission. Models predictions are validated by experimental data presented by Bhowmick et al. The results show 16% and 7% decrease in NOx concentration in AMFR and MFR respectively, compared with FR. Reduction of NOx emission and enhancement of ammonium nitrate conversion, demonstrate superiority of AMFR to previous configurations.
Keywords:Ammonium nitrate decomposition;Fluidized bed;Oxygen removal;Perovskite-type ceramic membrane;NOx emission
- Environment Agency, Science Report SC030155/SR2, 2005.
- Korom SF, Water Resour. Res., 28, 1657 (1992)
- Cho DW, Chon CM, Kim Y, Jeon BH, Schwartz FW, Lee ES, Song H, Chem. Eng. J., 175, 298 (2011)
- Suzuki T, Moribe M, Oyama Y, Niinae M, Chem. Eng. J., 183, 271 (2012)
- Fernandez-Nava Y, Maranon E, Soons J, Castrillon L, J. Hazard. Mater., 173(1-3), 682 (2010)
- Lundberg JO, Weitzberg E, Cole JA, Benjamin N, Nat. Rev. Microbiol., 2, 593 (2004)
- Boumediene M, Achour D, Desalination, 168, 187 (2004)
- Council Directive 2000/60/EC of 23 October 2000 establishing a framework for community action in the field of water policy, Off. J. Eur. Communities, 2000, L327/1.
- Ho CM, Tseng SK, Chang YJ, Lett. Appl. Microbiol., 33, 201 (2001)
- Ergas SJ, Reuss AF, J. Water Supply: Res. Technol. Aqua, 50, 161 (2001)
- Mansell BO, Schroeder ED, Water Res., 36, 4683 (2002)
- Mo H, Oleszkiewicz JA, Cicek N, Rezania B, Water Sci. Technol., 51, 357 (2005)
- Rezania B, Oleszkiewicz JA, Cicek N, Water Res., 41, 1074 (2007)
- Szekeres S, Kiss I, Bejerano TT, Soares MIM, Water Res., 35, 715 (2001)
- Chang CC, Tseng SK, Huang HK, Bioresour. Technol., 69(1), 53 (1999)
- Kurt M, Dunn IJ, Bourne JR, Biotechnol. Bioeng., 29, 493 (1987)
- Dries D, Liessens J, Verstraete W, Stevens P, Vost P, Ley J, Water Supply, 6, 181 (1988)
- Gros H, Schnoor G, Rutten P, Water Supply, 6, 193 (1988)
- Vasiliadou IA, Karanasios KA, Pavlou S, Vayenas DV, J. Hazard. Mater., 165(1-3), 812 (2009)
- Bhowmick S, Rao H, Sathiyamoorthy D, Ind. Eng. Chem. Res., 51(25), 8394 (2012)
- Rosser WA, Inami SH, Wise H, Trans. Faraday Soc., 67, 1753 (1963)
- Brower KR, Oxley JC, Tewari M, J. Phys. Chem., 93, 4029 (1989)
- Patil DG, Jain SR, Brill TB, Propell. Explos. Pyrotech., 17, 99 (1992)
- Shah MS, Oza TM, J. Chem. Soc., 21, 725 (1932)
- Oommen C, Jain SR, J. Hazard. Mater. A, 57, 253 (1999)
- Gunawan R, Zhang DK, J. Hazard. Mater., 165(1-3), 751 (2009)
- Sun JH, Sun ZH, Wang QS, Ding H, Wang T, Jiang CS, J. Hazard. Mater., 127(1-3), 204 (2005)
- Keenan AG, Notz K, Franco NB, J. Am. Chem. Soc., 91, 3168 (1969)
- Keenan AG, Notz K, Franco NB, Acta Mater., 91, 3168 (1969)
- Morinrga K, Torikai T, Nakagawa K, Fujino S, Acta Mater., 48, 4735 (2000)
- Liu ZM, Li JH, Hao JM, Chem. Eng. J., 165(2), 420 (2010)
- Sanchez J, Tsotsis TT, Amsterdam, The Netherlands, 1996.
- Rui ZB, Li YD, Lin YS, Chem. Eng. Sci., 64(1), 172 (2009)
- Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP, J. Membr. Sci., 323(2), 436 (2008)