화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.7, 693-700, July, 2014
Morphology, Crystallization and Mechanical Properties of Biodegradable Poly(butylene succinate-co-butylene carbonate)/Multi-Walled Carbon Nanotubes Nanocomposites
E-mail:
Biodegradable poly(butylene succinate-co-butylene carbonate) (PBSC)/carboxyl-functionalized multiwalled carbon nanotubes (f-MWCNTs) nanocomposites were prepared through a solution and casting method at low f-MWCNTs loadings. Scanning electron microscopy observations revealed a fine dispersion of f-MWCNTs in the PBSC matrix. Both the nonisothermal and isothermal melt crystallization processes of PBSC were enhanced, apparently by the presence of f-MWCNTs in the nanocomposites, because f-MWCNTs acted as an efficient heterogeneous nucleation agent for the crystallization of PBSC. The crystallization mechanism remained unchanged for both neat PBSC and the PBSC/f-MWCNTs nanocomposites, regardless of crystallization temperature; moreover, the crystal structures of PBSC were not modified by f-MWCNTs in the nanocomposites. The dynamical mechanical properties were also improved in the nanocomposites. Upon incorporating only 1 wt% of f-MWCNTs, the storage modulus of PBSC improved by about 30% at -60 ℃. In addition, the glass transition temperature values of PBSC were increased slightly in the nanocomposites, relative to that of neat PBSC.
  1. Pranamuda H, Chollakup R, Tokiwa Y, Appl. Environ. Microbiol., 65, 4220 (1999)
  2. Qiu ZB, Miao LQ, Yang WT, J. Polym. Sci. B: Polym. Phys., 44(11), 1556 (2006)
  3. Lee SH, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 77(13), 2908 (2000)
  4. Lee S, Wang S, Polym. Int., 55, 292 (2006)
  5. Hirano S, Nishikawa Y, Terada Y, Ikehara T, Nishi T, Polym. J., 34, 85 (2002)
  6. Ikehara T, Nishikawa Y, Nishi T, Polymer, 44(21), 6657 (2003)
  7. Weng MT, Qiu ZB, Ind. Eng. Chem. Res., 52(30), 10198 (2013)
  8. Weng M, Qiu Z, Thermochim. Acta, 575, 262 (2014)
  9. Iijima S, Nature, 354, 56 (1991)
  10. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  11. Zhang W, Shen L, Phang I, Liu T, Macromolecules, 37, 256 (204)
  12. Liu TX, Phang IY, Shen L, Chow SY, Zhang WD, Macromolecules, 37(19), 7214 (2004)
  13. Lai M, Li J, Yang J, Liu J, Tong X, Cheng H, Polym. Int., 53, 1479 (2004)
  14. Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA, J. Phys. Chem. B, 110(26), 12910 (2006)
  15. Shieh YT, Liu GL, J. Polym. Sci. B: Polym. Phys., 45(14), 1870 (2007)
  16. Zhao Y, Qiu Z, Yang W, Compos. Sci. Technol., 69, 627 (2009)
  17. Zhao YY, Qiu ZB, Yang WT, J. Phys. Chem. B, 112(51), 16461 (2008)
  18. Wu D, Wu L, Zhang M, Zhao Y, Polym. Degrad. Stab., 93, 1577 (2008)
  19. Xu CL, Qiu ZB, J. Polym. Sci. B: Polym. Phys., 47(22), 2238 (2009)
  20. Xu C, Qiu Z, Polym. Adv. Technol., 22, 538 (2011)
  21. Ray SS, Vaudreuil S, Maazouz A, Bousmina M, J. Nanosci. Nanotechnol., 6, 2191 (2006)
  22. Song L, Qiu Z, Polym. Adv. Technol., 22, 1642 (2011)
  23. Wu TM, Chen EC, J. Polym. Sci. B: Polym. Phys., 44(3), 598 (2006)
  24. Qiu Z, Wang H, Xu C, J. Nanosci. Nanotechnol., 11, 7884 (2011)
  25. Avrami M, J. Chem. Phys., 7, 1103 (1939)
  26. Avrami M, J. Chem. Phys., 9, 177 (1941)
  27. Wunderlich B, Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, Academic Press, New York (1976)