화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.7, 773-781, July, 2014
Study on the Influence of Pretreatment and Chain Length of Substituents on Cellulose Mixed Esters
E-mail:
In this work, homogeneous esterification of the cellulose mixed esters was accomplished with water-activated α-cellulose, various saturated fatty acids, and acetic anhydride in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) medium to study the influence of activation and fatty acyl chain length on the cellulose mixed esters (CME). α-Cellulose was activated for 2 h at 50 ℃ in deionized water prior to esterification. CME was obtained after esterification for 5 h at 120 ℃. The purified products were characterized in various ways. The morphology, structure, total degree of substitution, crystallization characteristics, thermal properties, contact angle, and film properties of CME were examined by FE-SEM, 1H NMR, FTIR, XRD, DMA, TGA, and CAA. These analyses revealed that the water activation pretreatment of α-cellulose was the critical factor affecting the esterification efficiency which is related to the overall properties of the cellulose esters. It is also confirmed that the glass transition behavior of the cellulose esters changes depending on the chain length of the substituents.
  1. Dufresne A, Thomas S, Pothan LA, Biopolymer Nanocomposites: Processing, Properties, and Applications, John Wiley & Sons, Inc., New Jersey (2013)
  2. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM, J. Mater. Sci., 36(9), 2107 (2001)
  3. Feng L, Chen Z, J. Mol. Liq., 142, 1 (2008)
  4. Kondo T, Sawatari C, Polymer, 37, 393 (1995)
  5. Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T, Angew. Makromol. Chem., 238, 143 (1996)
  6. Tosh B, Saikia CN, Dass NN, Carbohydr. Res., 327, 345 (2000)
  7. Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A, J. Appl. Polym. Sci., 100(2), 1093 (2006)
  8. Uschanov P, Johansson LS, Maunu SL, Laine J, Cellulose, 18, 393 (2011)
  9. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D, Prog. Polym. Sci., 26, 1605 (2001)
  10. Chauvelon G, Saulnier L, Buleon A, Thibault JF, Gourson C, Benhaddou R, Granet R, Krausz P, J. Appl. Polym. Sci., 74(8), 1933 (1999)
  11. Gaudinski JB, Dawson TE, Quideau S, Schuur EAG, Roden JS, Trumbore SE, Sandquist DR, Oh SW, Wasylishen RE, Anal. Chem., 77, 7212 (2005)
  12. Pickard LJ, Harris ME, J. Chem. Educ., 76, 1512 (1999)
  13. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X, Carbohydr. Polym., 67, 147 (2007)
  14. McMurry JE, Organic Chemistry, 8th ed., Cengage Learning (2012)
  15. Pursch M, Strohschein S, Handel H, Albert K, Anal. Chem., 68, 386 (1996)
  16. Elomaa M, Asplund T, Soininen P, Laatikainenc R, Peltonend S, Hyvarinend S, Urttia A, Carbohydr. Polym., 57, 261 (2004)
  17. Akerholm M, Hinterstoisser B, Salmen L, Carbohydr. Res., 339, 569 (2004)
  18. Jandura P, Kokta BV, Riedl B, J. Appl. Polym. Sci., 78(7), 1354 (2000)
  19. Brostow W, Performance of Plastics, Hanser/Gardner Publications, Cincinnati (2000)
  20. Menczel JD, Prime RB, Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley & Sons, Inc., New Jersey (2009)
  21. Ohno T, Nishio Y, Cellulose, 13, 245 (2006)
  22. Jandura P, Riedl B, Kokta BV, Polym. Degrad. Stab., 70, 387 (2000)
  23. Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S, Colloids Surf. A, 181, 279 (2001)
  24. Jucker C, Clark MM, J. Membr. Sci., 97, 37 (1994)