화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.4, 392-395, August, 2014
(2S,3S,4S)-3,4-다이하이드록시글루타믹산의 효율적인 입체선택적 합성
Efficient Stereoselective Synthesis of (2S,3S,4S)-3,4-Dihydroxyglutamic Acid
E-mail:
초록
생리학적 활성을 가진 (2S,3S,4S)-3,4-다이하이드록시 글루타믹산(DHGA)을 값이 저렴하고 수급이 용이한 D-serine 유도체로부터 효율적으로 합성하였다. D-serine 유도체로부터 얻어진 γ-아미노-α,β-불포화성(Z)-에스터의 아민에 다이페닐메틸렌기를 도입, 이를 이용한 입체선택적 이 중 알코올화 반응을 통해 2,3 위치에 두 개의 하이드록시기를 10 : 1 이상의 높은 선택성과 86%의 높은 수율로 도입하여 중간체 5a를 효율적으로 합성하였고, 이 중간체의 간단한 산화 및 가수분해 반응을 통해 (2S,3S,4S)-3,4-DHGA 합성에 성공하였다. 이는 11단계에 총 30%의 수율과 입체선택적인 결과로 현재까지 보고된 (2S,3S,4S)-3,4-DHGA의 합성법 중에 가장 효율적이다. 이 결과는 OsO4을 이용한 입체선택적 이중 알콜화 반응이 아미노 다이올을 포함하는 다양한 생리활성 물질의 효율적인 합성에 적용할 수 있음을 뒷받침한다.
(2S,3S,4S)-3,4-Dihydroxyglutamic acid (DHGA), a biologically active α,β-dihydroxy-γ-amino acid, was efficiently synthesized from a readily available D-serine derivative in 30% overall yield over 11 steps. The key stereoselective OsO4-catalyzed dihydroxylation reaction controlled by an N-diphenylmethylene group on the amino group of γ-amino-α,β-unsaturated (Z)-ester successfully introduced the diol moiety of the intermediate 5a in 86% with more than 10 : 1 diastereomeric ration. Then it was in turn successfully converted to the desired target compound, (2S,3S,4S)-3,4-DHGA, via simple oxidation and hydrolysis in a highly stereoselective manner and a higher yield than the previous syntheses. This result strongly supports that our synthetic methodology of stereoselective OsO4-catalyzed dihydroxylation should be useful in stereoselctive synthesis of various bioactive compounds with an amino diol moiety.
  1. Choi DW, Neuron, 1, 623 (1988)
  2. Knopfel T, Kuhn R, Allgeier H, J. Med. Chem., 38, 1417 (1995)
  3. Conn PJ, Pin JP, Annu. Rev. Pharmacol. Toxicol., 37, 205 (1997)
  4. Kunishima N, Shimada Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K, Natrure, 407, 971 (2000)
  5. Moloney MG, Nat. Prod. Rep., 19, 597 (2002)
  6. Dauban P, Chiaroni A, Riche C, Dodd RH, J. Org. Chem., 61, 2488 (1996)
  7. Langlois N, Tetrahedron Lett., 40, 8801 (1999)
  8. Dauban P, De Saint-Fuscien C, Acher F, Prezeau L, Brabet I, Pin JP, Dodd RH, Bioorg. Med. Chem. Lett., 10, 129 (2000)
  9. Virtanene AI, Ettala T, Acta Chem. Scand., 11, 182 (1957)
  10. Muller AL, Usheimo K, Acta Chem. Scand., 19, 1987 (1965)
  11. Dauban P, De Saint-Fuscien C, Dodd RH, Tetrahedron, 55, 7589 (1999)
  12. Oba M, Koguchi S, Nishiyama K, Tetrahedron, 60, 8089 (2004)
  13. Kim HJ, Yoo D, Choi SY, Chung YK, Kim YG, Tetrahedron: Asymmetry, 19, 1965 (2008)
  14. Oh JS, Park DY, Song BS, Bae JG, Yoon SW, Kim YG, Tetrahedron Lett., 43, 7209 (2002)
  15. Oh JS, Jeon J, Park DY, Kim YG, Chem. Commun., 770 (2005)
  16. Jeon J, Shin M, Yoo JW, Oh JS, Bae JG, Jung SH, Kim YG, Tetrahedron Lett., 48, 1105 (2007)
  17. Jeon J, Hong SK, Oh JS, Kim YG, J. Org. Chem., 71, 3310 (2006)
  18. Jeon J, Lee JH, Kim JW, Kim YG, Tetrahedron: Asymmetry, 18, 2448 (2007)
  19. Taken in part from the Ph.D. thesis; Jeon J, Stereoselective dihydroxylation reactions of chiral allylic amines and their applications to biologically active natural products, Seoul National University (2008)