화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.9, 1582-1591, September, 2014
Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes
E-mail:
We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0 mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a KL and KF value of 1.217 L/mg and 18.14 mg^(1-n)Ln/g functionalized CNT, while 2.365 L/mg and 2.307 mg^(1-n)Ln/g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.
  1. Gupta VK, Agarwal S, Saleh TA, Water Res., 45, 1 (2011)
  2. Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
  3. Kaufman DB, Am. J. Dis. Child., 119, 374 (1970)
  4. Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633 (2008)
  5. Kandah MI, Meunier JL, J. Hazard. Mater., 146(1-2), 283 (2007)
  6. Hsieh SH, Horng JJ, Tsai CK, J. Mater. Res., 21, 1269 (2006)
  7. Panoyotova MI, Waste Manage., 21, 671 (2001)
  8. Li YH, Wang SG, Cao AY, Zhao D, Zhang XF, Xu CL, Luan ZK, Ruan DB, Liang J, Wu DH, Wei BQ, Chem. Phys. Lett., 350(5-6), 412 (2001)
  9. Kuh SE, Kim DS, Environ. Technol., 21, 883 (2000)
  10. Park YJ, Jung KH, Park KK, J. Colloid Interface Sci., 171(1), 205 (1995)
  11. Dimitrova SV, Mehandgiev DR, Water Res., 32, 3289 (1998)
  12. Iijima S, Nature, 354, 56 (1991)
  13. Rouff RS, Lorents DC, Carbon, 33, 925 (1995)
  14. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T, Nature, 382(6586), 54 (1996)
  15. Terrones M, Annu. Rev. Mater. Res., 33, 419 (2003)
  16. Li YH, Zhu YQ, Zhao YM, Wu DH, Luan ZK, Diam Relat Mater., 15, 90 (2006)
  17. Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK, J. Colloid Interface Sci., 323(1), 33 (2008)
  18. Mubarak NM, Ruthiraan M, Sahu JN, Abdullah EC, Jayakumar NS, Sajuni NR, Tan J, Inter. J. Nanosci., 12(6), 1350044 (2013)
  19. Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Ayu Haslija AB, Tan J, J. Environ. Chem. Eng., 1, 486 (2013)
  20. Wu CH, J. Colloid Interface Sci., 311(2), 338 (2007)
  21. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 46, 833 (2008)
  22. Mubarak NM, Yusof F, Alkhatib MF, Chem. Eng. J., 168(1), 461 (2011)
  23. Balasubramanian K, Burghard M, Small, 1, 180 (2005)
  24. Oye MM, Yim S, Fu A, Schwanfelder K, Meyyapan M, Nguyen CV, J. Nanosci. Nanotechnol., 10, 4082 (2010)
  25. Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109 (2009)
  26. Laszlo K, Podkoscielny P, Dabrowski A, Appl. Surf. Sci., 252(16), 5752 (2006)
  27. Wang SJ, Hu WX, Liao DW, Ng CF, Au C, Catal. Today, 93, 711 (2005)
  28. Li YH, Liu FQ, Xia B, Du QJ, Zhang P, Wang DC, Wang ZH, Xia YZ, J. Hazard. Mater., 177(1-3), 876 (2010)
  29. Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL, J. Phys. Chem. B, 107(16), 3712 (2003)
  30. Agboola AE, Pike RW, Hertwig TA, Lou HH, Clean Technol. Environ. Policy, 9, 289 (2007)
  31. Yan LH, Zechao D, Jun D, Dehai W, Zhaokun L, Yanqiu Z, Water Res., 39, 605 (2005)