화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.9, 1661-1667, September, 2014
A novel approach for olive leaf extraction through ultrasound technology : Response surface methodology versus artificial neural networks
E-mail:
Response surface methodology (RSM) and artificial neural network (ANN) were used to evaluate the ultrasound-assisted extraction (UAE) of polyphenols from olive leaves. To investigate the effects of independent parameters on total phenolic content (TPC) in olive leaves, pH (3-11), extraction time (20-60 min), temperature (30-60 oC) and solid/solvent ratio (500 mg/10-20 mL) were selected. RSM and ANN approaches were applied to determine the best possible combinations of these parameters. Box-Behnken design model was chosen for designing the experimental conditions through RSM. The second-order polynomial models gave a satisfactory description of the experimental data. Experimental parameters and responses were used to train the multilayer feed-forward networks with MATLAB. ANN proved to have higher prediction accuracy than that of RSM.
  1. Le Floch F, Tena MT, Rios A, Valcarcel M, Talanta, 46, 1123 (1998)
  2. Dimitrious B, Trends Food Sci. Technol., 17, 505 (2006)
  3. Luengthanaphol S, Mongkholkhajornsilp D, Douglas S, Douglas PL, Pengsopa LI, Pongamphai S, J. Food Eng., 63(3), 247 (2004)
  4. Tena MT, Valcarcel M, Hidalgo PJ, Ubera JL, Anal. Chem., 69, 521 (1997)
  5. Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS, J. Supercrit. Fluid., 33, 223 (2005)
  6. Balasundram N, Sundram K, Samman S, Food Chem., 99, 191 (2006)
  7. Gokalp N, Dogal antioksidanlar, Tezsiz Yuksek Lisans Donem Projesi, Ankara Universitesi Fen Bilimleri Enstitusu, Ankara (2006)
  8. Hayouni EA, Abedrabba M, Bouix M, Hamdi M, Food Chem., 105, 1126 (2007)
  9. Soler-Rivas C, Espin JC, Wichers HJ, J. Sci. Food Agr., 80, 1013 (2000)
  10. Lee OH, Lee BY, Lee J, Lee HB, Son JY, Park CS, Shetty K, Kim YC, Bioresour. Technol., 100(23), 6107 (2009)
  11. El SN, Karakaya S, Nutr. Rev., 67, 632 (2009)
  12. Cordell GA, Phytochemistry, 55, 463 (2000)
  13. Albu S, Joyce E, Paniwmyk L, Lorimer JP, Mason TJ, Ultrason. Sonochem., 11, 261 (2004)
  14. Aehle E, Grandic SRL, Ralainirina R, Baltora-Rosset S, Mesnard F, Prouillet C, Maziere JC, Fliniaux MA, Food Chem., 86, 579 (2004)
  15. Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gartzia I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Codina C, Food Chem., 97, 137 (2006)
  16. Zare L, Esmaeili-Mahani S, Abbasnejad M, Rasoulian B, Sheibani V, Sahraei H, Kaeidi A, Phytother Res., 26, 1731 (2012)
  17. Wainstein J, Ganz T, Boaz M, Dayan YB, Dolev E, Kerem Z, Madar Z, J. Med. Food, 15, 605 (2012)
  18. Milanizadeh S, Bigdeli MR, Rasoulian B, Amani D, Thrita., 3, 12914 (2014)
  19. Issazadeh K, Aliabadi MA, Advanced Studies in Biology, 4, 397 (2012)
  20. Shen Y, Song SJ, Keum N, Park T, Evid. Based Complement. Alternat. Med., DOI:10.1155/2014/971890 (2014)
  21. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM, J. Quality Technol., 36, 53 (2004)
  22. Zurada JM, Introduction to Artifical Neural Systems, West Publishing Company, St. Paul, MN (1992)
  23. Razbani O, Assadi M, J. Power Sources, 246, 581 (2014)
  24. Bastani D, Hamzehie ME, Davardoost F, Mazinani S, Poorbashiri A, Fluid Phase Equilib., 354, 6 (2013)
  25. Doherty SK, Gomm JB, Williams D, Comput. Chem. Eng., 21, 327 (1996)
  26. Dirion JL, Cabassud M, Casamatta G, Le Lann MV, Expert Systems, 2, 443 (2002)
  27. Malik NSA, Bradford JM, SciHortic-Amsterdam, 110, 274 (2006)
  28. Lawson J, Design and analysis of experiments with SAS, CRC Press, Taylor &Francis Group (2010)
  29. Vining G, Kowalski S, Statistical methods for engineers, 3rd Ed. (2010)
  30. Miles J, Shevlin M, Applying regression and correlation: A Guide for students and researchers, Sage Publications Ltd., London (2005)
  31. Draper NR, John JA, Technometrics, 30, 423 (1998)
  32. Principe JC, Euliano NR, Lefebvre WC, Neural and adaptive systems: Fundamentals through simulations, John Wiley & Sons Inc., New York (2000)
  33. Wang SJ, Chen F, Wu JH, Wang ZF, Liao XJ, Hu XS, J. Food Eng., 78(2), 693 (2007)
  34. Mylonaki S, Kiassos E, Makris DP, Kefalas P, Anal. Bioanal. Chem., 392, 977 (2008)
  35. McCloud TG, Molecules, 15, 4526 (2010)
  36. Chew KK, Ng SY, Thoo YY, Khoo MZ, Wan Aida WM, Ho CW, Int. Food Res., 18, 571 (2011)
  37. Thoo YY, Ho SK, Liang JY, Ho CW, Tan CP, Food Chem., 120, 290 (2010)
  38. Crapiste GH, Oliveira FAR, Gekas V, Engineering and Food for the 21st Century, CRC Press (2002)
  39. Ruenroengklin N, Zhong J, Duan XW, Yang B, Li JR, Jiang YM, Int. J. Mol. Sci., 9(7), 1333 (2008)
  40. Tabart J, Kevers C, Sipel A, Pincemail J, Defraigne JO, Dommes J, Food Chem., 105, 1268 (2007)
  41. Gorban AN, Sargsyan HP, Wahab HA, Math. Model. Nat. Phenom., 6, 184 (2011)
  42. Juntachote T, Berghofer R, Bauer F, Siebenhandl S, Int. J. Food Sci. Technol., 41, 121 (2006)
  43. Silva EM, Rogez H, Larondelle Y, Sep. Purif. Technol., 55(3), 381 (2007)
  44. Pan G, Qiao J, Zhu C, Wang F, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (2011)
  45. Zhu CH, Lu FP, Han ZL, Du LX, J. Ind. Microbiol. Biotechnol., 34, 271 (2007)