화학공학소재연구정보센터
AAPG Bulletin, Vol.98, No.2, 279-313, 2014
Sequence stratigraphy of the Eocene turbidite reservoirs in Albacora field, Campos Basin, offshore Brazil
This article describes a 250-m (820-ft)-thick upper Eocene deep-water clastic succession. This succession is divided into two reservoir zones: the lower sandstone zone (LSZ) and the upper sandstone zone, separated by a package of pelitic rocks with variable thickness on the order of tens of meters. The application of sequence-stratigraphic methodology allowed the subdivision of this stratigraphic section into third-order systems tracts. The LSZ is characterized by blocky and fining-upward beds on well logs, and includes interbedded shale layers of as much as 10 m (33 ft) thick. This zone reaches a maximum thickness of 150 m (492 ft) and fills a trough at least 4 km (2 mi) wide, underlain by an erosional surface. The lower part of this zone consists of coarse- to medium-grained sandstones with good vertical pressure communication. We interpret this unit as vertically and laterally amalgamated channel-fill deposits of high-density turbidity flows accumulated during late forced regression. The sandstones in the upper part of this trough are dominantly medium to fine grained and display an overall fining-upward trend. We interpret them as laterally amalgamated channel-fill deposits of lower density turbidity flows, relative to the ones in the lower part of the LSZ, accumulated during lowstand to early transgression. The pelitic rocks that separate the two sandstone zones display variable thickness, from 35 to more than 100 m (115 >328 ft), indistinct seismic facies, and no internal markers on well logs, and consist of muddy diamictites with contorted shale rip-up clasts. This section is interpreted as cohesive debris flows and/or mass-transported slumps accumulated during late transgression. The upper sandstone zone displays a weakly defined blocky well-log signature, where the proportion of sand is higher than 80%, and a jagged well-log signature, where the sand proportion is lower than 60%. The high proportions of sand are associated with a channelized geometry that is well delineated on seismic amplitude maps. Several depositional elements are identified within this zone, including leveed channels, crevasse channels, and splays associated with turbidity flows. This package is interpreted as the product of increased terrigenous sediment supply during highstand normal regression.