- Previous Article
- Next Article
- Table of Contents
Advanced Functional Materials, Vol.24, No.17, 2421-2440, 2014
Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity
The formation of semiconductor composites comprising multicomponent or multiphase heterojunctions is a very effective strategy to design highly active photocatalyst systems. This review summarizes the recent strategies to develop such composites, and highlights the most recent developments in the field. After a general introduction into the different strategies to improve photocatalytic activity through formation of heterojunctions, the three different types of heterojunctions are introduced in detail, followed by a historical introduction to semiconductor heterojunction systems and a thorough literature overview. Special chapters describe the highly-investigated carbon nitride heterojunctions as well as very recent developments in terms of multiphase heterojunction formation, including the latest insights into the anatase-rutile system. When carefully designed, semiconductor composites comprising two or three different materials or phases very effectively facilitate charge separation and charge carrier transfer, substantially improving photocatalytic and photoelectrochemical efficiency.