화학공학소재연구정보센터
Advanced Functional Materials, Vol.24, No.17, 2472-2480, 2014
Redox-Induced Asymmetric Electrical Characteristics of Ferrocene-Alkanethiolate Molecular Devices on Rigid and Flexible Substrates
The electrical properties of ferrocene-alkanethiolate self-assembled monolayers (SAMs) on a high yield solid-state device structure are investigated. The devices are fabricated using a conductive polymer interlayer between the top electrode and the SAM on both silicon-based rigid substrates and plastic-based flexible substrates. Asymmetric electrical transport characteristics that originate from the ferrocene moieties are observed. In particular, a distinctive temperature dependence of the current (i.e., a decrease in current density as temperature increases) at a large reverse bias, which is associated with the redox reaction of ferrocene groups in the molecular junction, is found. It is further demonstrated that the molecular devices can function on flexible substrates under various mechanical stress configurations with consistent electrical characteristics. This study enhances the understanding of asymmetric molecules and may lead to the development of functional molecular electronic devices on both rigid and flexible substrates.