화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.2, 321-325, April, 1996
Cu-Y 제올라이트상의 NO분해반응에 대한 양자화학적 해석
Quantum Chemical Calculation of NO Decomposition over Cu-Y Zeolite
초록
Cun+교환된 Y형 제올라이트 상에서 진행되는 NO분해반응의 특성을 양자화학적 계산을 통해 해석하였다. 제올라이트내 양이온 자리를 나타내는 Cluster모델들에 대해 CNDO/2와 같은 이론적 계산을 수행하여 전체에너지, LUMO에너지 및 Wiberg결합차수값들을 얻었다. 각 모델들의 전체에너지와 결합차수값들을 통해 제올라이트 골격내 Cun+ 양이온 자리에서의 NO분해반응에 대한 반응기구를 고찰하였다. 제안된 분자모델들은 각기 다른 Si/Al비와 Cu 및 Cu2+교환된 양이온의 경우로 구분하여 고찰하였다. LUMO에너지의 계산을 통해 모델분자들의 L산성도를 해석하였다. NO분해반응의 메카니즘은 NO의 흡착, N2 및 O2 로의 분해, N2 및 O2의 탈착의 단계가 연속적으로 진행될 가능성이 있었다. 양이온 자리에서 Cu2+는 Cu보다 더 강한 L산성을 나타내었다.
Quantum chemical calculations are used to characterize the decomposition of nitrogenmonoxide over Cu<n+-Y zeolite. The method of theoretical calculations, such as CNDO/2, have been applied to cluster models representing cation sites in zeolite to obtain total energies, LUMO energies, and Wiberg bond orders. The calculated total energies and bond orders of cluster models showed the reaction mechanism of NO decomposition over Cun+ site in zeolite framework. The suggested cluster models of varying Si/Al ratios studied with exchange cations in the Cuand in the Cu2+states. And the calculated LUMO energies can predict L acidifies of cluster models. The results from these experiments showed the possibility of the mechanism of NO decomposition, progressing adsorption of NO, conversion to N2 and O2, desorption of N2 and O2 in sequence. The L acidity of Cu2+ ion in cation site is more strong than Cu.
  1. Rabo JA, "Zeolite Chemistry and Catalysis," ACS Monograph, Washington D.C. (1976)
  2. Murakami Y, "New Developments in Zeolite Science and Technology," 725-732, Kodansa, Tokyo (1986)
  3. Murakami Y, "New Developments in Zeolite Science and Technology," 811-818, Kodansa, Tokyo (1986)
  4. Arribas J, J. Catal., 104, 135 (1987) 
  5. Aparicio LM, J. Catal., 104, 381 (1987) 
  6. Chang CD, "Hydrocarbons from Methanol," 4-35, Marcel Dekker Inc., New York (1983)
  7. Murakami Y, "New Developments in Zeolite Science and Technology," 875-882, Kodansa, Tokyo (1986)
  8. Grunert W, Sauerlandt U, Schlogl R, Karge HG, J. Phys. Chem., 97, 1413 (1993) 
  9. Jacobs WPJH, deHann JW, vandeven LJM, vanSanten RA, J. Phys. Chem., 97, 10394 (1993) 
  10. Gil B, Broclawik E, Datka J, Klinowski J, J. Phys. Chem., 98(3), 930 (1994) 
  11. Valyon J, Hall WK, Catal. Lett., 19, 109 (1993) 
  12. Lei GD, Adelman BJ, Sarkany J, Sachtler WM, Appl. Catal. B: Environ., 5(3), 245 (1995) 
  13. Valyon J, Hall WK, J. Catal., 143, 520 (1993) 
  14. Valyon J, Hall WK, J. Phys. Chem., 97, 1204 (1993) 
  15. Valyon J, Hall WK, J. Phys. Chem., 97, 7054 (1993) 
  16. Itho Y, Nishiyama S, Tsuruya S, Masai M, J. Phys. Chem., 98(3), 960 (1994) 
  17. Giamello E, Murphy D, Magnacca G, Morterra C, Shioya Y, Nomura T, Anpo M, J. Catal., 136, 510 (1992) 
  18. Kucherov AV, Gerlock JL, Jen HW, Shelef M, J. Catal., 152, 631 (1995) 
  19. Jirka I, Bosacek V, Zeolites, 11, 77 (1991) 
  20. Crocker M, Herold RHM, Sonnemans MHW, Emeis CA, Wilson AE, Moolen JN, J. Phys. Chem., 97, 432 (1993) 
  21. Dedecek J, Wichterlova B, J. Phys. Chem., 98(22), 5721 (1994) 
  22. Anpo M, Matsuoka M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson HH, Webber S, Ouellette S, Fox MA, J. Phys. Chem., 98(22), 5744 (1994) 
  23. Grunert W, Hayes NW, Joyner RW, Shpiro ES, Siddiqui MR, Baeva GN, J. Phys. Chem., 98(42), 10832 (1994) 
  24. Li Y, Hall WK, J. Catal., 129, 202 (1991) 
  25. Hall WK, Valyon J, Catal. Lett., 15, 311 (1992) 
  26. Kassab E, Seiti K, Allavena M, J. Phys. Chem., 95, 9425 (1991) 
  27. Bates S, J. Phys. Chem., 97, 5897 (1993) 
  28. Dewar MJ, Zoebisch EG, Healy EF, Stewart JJP, J. Am. Chem. Soc., 107, 3902 (1985) 
  29. Levine IN, "Quantnm Chemistry," 3rd ed., 499, Allyn and Bacon Inc., Boston (1983)
  30. Beran S, J. Phys. Chem., 86, 111 (1982) 
  31. Olson DH, J. Phys. Chem., 74(8), 2758 (1970)