Applied Catalysis B: Environmental, Vol.142, 89-100, 2013
Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts
Influence of ceria on the NOx storage and reduction behavior of NSR catalysts was investigated in a systematic manner over gamma-Al2O3, Ba/Al, Ce/Al, Ba/Ce/Al, Pt/Al, Pt/Ce/Al and Ba/Pt/Ce/Al systems using BET, XRD, Raman spectroscopy and in situ FTIR. Although ceria promotion does not seem to have a substantial influence on the overall NOx storage capacity, it does have a clearly positive effect on the NOx reduction via H-2(g) during catalytic regeneration under rich conditions which is associated with the enhancement in the total amount of activated hydrogen on the catalyst surface and lowering of the thermal threshold for hydrogen activation. A strong metal support interaction (SMSI) between Pt sites and the BaOx/CeOx domains leads to a complex redox interplay including oxidation of the precious metal sites, reduction of ceria, formation of BaO2 species as well as the formation of Pt-O-Ce interfacial sites on the Ba/Pt/Ce/Al surface. Ceria domains also act as anchoring sites for Pt species, limit their surface diffusion, enhance dispersion and hinder sintering at elevated temperatures. On the Ba/Pt/Ce/Al catalyst surface, reduction of the stored nitrates under relatively mild conditions via H-2(g) initially leads to the formation of surface -OH and -NHx species and gas phase N2O, as well as the destruction of surface nitrate species, leaving bulk nitrates mostly intact. Reduction proceeds with the conversion of N2O(g) into N-2(g) along with the partial loss of surface -OH and -NHx groups, dehydration and the loss of bulk nitrates. (c) 2013 Elsevier B.V. All rights reserved.