화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.148, 357-365, 2014
Carbon nanofibres coated with Ni decorated MoS2 nanosheets as catalyst for vacuum residue hydroprocessing
Catalysts based on functionalisecl carbon nanofibers (FCNF) coated with Ni-decorated MoS2 nanosheets were obtained by direct decomposition of ammonium thiomolybdate and nickel nitrate impregnated on the FCNF under controlled temperature conditions in inert atmosphere. The catalysts were characterised by X-ray diffraction (XRD), N-2 adsorption, Raman spectroscopy, temperature programmed reduction of sulfur species (TPR-S), NH3 temperature programmed desorption (NH3-TPD) and transmission electron microscopy (TEM). Decomposition temperature was found to have a paramount importance in the formation of uniform MoS2 slabs, as revealed by the TEM study: at 600 degrees C, non-uniform covering of the carbon nanofiber (CNF) was observed together with the presence of small round-shaped metal particles (ca. 20 nm). On the other hand, at 450 degrees C CNF appeared homogeneously covered by amorphous MoS2 slabs decorated with Ni, resulting in higher amount of coordinated unsaturated sites (CUS), as determined by TPR-S. Catalysts were tested in the hydroprocessing of a vacuum residue and the results were compared against a benchmark alumina-supported NiMo catalyst. Higher asphaltene conversions were obtained for the CNF-supported catalysts prepared at 450 degrees C, which overperformed the Al2O3-supported benchmark catalyst. However, the catalytic performance in hydrodesulfurisation and hydrodemetallisation of the CNF-based catalysts was slightly lower than that of the benchmark catalyst. (C) 2013 Elsevier B.V. All rights reserved.