Applied Energy, Vol.107, 329-337, 2013
Life cycle modeling of energy matrix scenarios, Belgian power and partial heat mixes as case study
The present paper introduces a life cycle modeling approach for representing actual demand of energy or energy intensive products delivered within a system (electricity, heat, etc.) for optimization of the energy mix, according to some of the available life cycle impact assessments (LCIAs). Unlike classical LCA modeling approach, the real amount of several energy products leaving the system and the interactions due to the presence of multi-output processes are considered within the present approach. As a case study, future scenarios are obtained for the Belgian electricity mix production and the heat mix potentially substituted by CHP or biomass, switching between abandoning or not power from nuclear energy. The possibility of using natural gas, biomass for cogeneration, wind power and solar photovoltaic energy are considered within the availability ranges of these resources. Finally, results are presented from successive optimizations according to the sustainability potential defined in a previous paper. A pathway to a more sustainable Belgian energy system is obtained. Finally it is concluded that under the modeling conditions and without nuclear energy it is not possible to obtain a reduction of GHGs and despite diminishing of non-renewable resource consumption, a rising of toxicity is obtained. (C) 2013 Elsevier Ltd. All rights reserved.