화학공학소재연구정보센터
Applied Energy, Vol.109, 523-529, 2013
Active free cooling optimization with thermal energy storage in Stockholm
Latent heat thermal energy storage (LHTES) integrated active free cooling stores night time cold and serves as heat sink for cooling when demand rises. Passive buildings, albeit their advantages in limiting heat loss during winter time, are often paired with excessive internal overheating in summer, as shown in the first part of this study. Under the climate condition in Stockholm, LHTES systems may provide solutions for sustainable cooling with use of renewable cooling sources. This study presents a multi-objective optimization on system cost and cooling supply for various LHTES configurations followed with a sensitivity analysis on phase change material cost and energy price. Results indicate that optimized LHTES may meet cooling needs while retaining economic viability. However, LHTES based cooling systems may require substantially higher electricity demand than conventional air conditioning unit for applications where high cooling thermal power rate is to be met, a tradeoff to indoor comfort level needs to be considered to reach the concept of sustainable free cooling. We here provide a novel techno-economic feasibility study of active free cooling LHTES in Stockholm as well as new insights to cost, comfort level and energy requirement with use of multi-objective optimization algorithm. (C) 2013 Elsevier Ltd. All rights reserved.