Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.4, 645-652, August, 1996
선택적 촉매 산화 반응에 의한 황화 수소의 제거; II. TiO2/SiO2촉매 상에서 황화 수소의 선택적 산화 반응
Removal of H2S by Selective Catalytic Oxidation Ⅱ. Selective Oxidation of H2S on TiO2/SiO2 Catalysts
초록
본 연구는 H2S를 TiO2/SiO2 촉매상에서 산소와의 직접 산화 반응을 통해 원소 황의 형태로 제거하는 반응에 관한 것이다. 순수한 TiS2와 Ti(SO4)2를 사용한 반응 실험과 순수한 TiO2에 대한 주기적 온도 조작 실험 결과로부터 TiO2는 황 회수 공정에서 사용되는 촉매의 비활성화의 주원인으로 알려진 sulfation이나 sulfidation에 대해 매우 안정한 것으로 나타났다. TiO2/SiO2 촉매에서 TiO2의 담지랑이 증가함에 따라 H2S의 전화율이 증가하였고, 원소 황의 선택도는 아주 소폭으로 감소하였다. 반응 실험 결과 O2/H2S의 비가 증가할수록 원소 황의 선택도는 크게 감소하였다. 10 wt.% TiO2/SiO2 촉매는 화학 양론비의 조성(H2S=5 vol.% O2=2.5 vol.%)의 반응물에 10 vol.%의 수증기를 첨가한 경우 활성과 선택도가 감소하였으나 여전히 80% 이상의 원소 황 수율을 유지하고 있었다.
Selective catalytic oxidation of H2S to elemental sulfur using TiO2/SiO22 catalysts was investigated in this study. The reaction test with pure TiS2 and Ti(SO4)2 and cyclic temperature operation revealed that TiO2 had a good resistance to sulfation and sulfidation, which are known as the main cause of catalytic deactivation in sulfur recovery process. With the increase of TiO2 loading amount in TiO2/SiO2 catalysts, the conversion of H2S increased and the selectivity of elemental sulfur was very slightly decreased. As the ratio of O2/H2S increased, the selectivity to elemental sulfur was drastically decreased. In the presence of 10 vol.% water vapor to a stoichiometric mixture of H2S and O2(H2S= 5 vol.% O=2.5 vol.% ), both activity and selectivity of 10 wt.% TiO2/SiO2 catalyst are decreased, but it still showed more than 80% of sulfur yield.
- Othmer K, "Encyclopedia of Chemical Technology," 3rd Ed., 22, 276, Wiley-Interscience, Publisher, New York (1983)
- Lagas JA, Berben PH, Oil Gas J., 10, 68 (1988)
- Kettner R, Liermann N, Oil Gas J., 11, 63 (1983)
- Kettner R, Lubcke T, Liermann N, European Patent, 78690 (1982)
- Chopin T, Hebrard JL, Quemere E, European Patent, 422999 (1990)
- Lagas JA, Barsboom J, Heijcoop G, Hydrocarb. Process., April, 40 (1989)
- Nisselrooy PFMT, Lagas JA, Catal. Today, 16, 263 (1993)
- Goar EN, MacDougall RS, Lagas JA, Oil Gas J., 28, 45 (1994)
- Berben PH, Scholten A, Titular NK, Brahma N, VanderWal WJJ, Geus JW, "Catalyst Deactivation 1987," ed. B. Delmon and G.F. Froment, 34, 123, Elsevier, Amsterdam (1991)
- Huisman HM, vanderBerg P, Mos R, VanDillen AJ, Geus JW, "Environmental Catalysis," ed. J.N. Armor, 393, ACS Marple, New York (1994)
- vandenBrink PJ, Scholten A, vanDillen AJ, Geus JW, "Catalyst Deactivation 1991," ed. C.H. Bartholomew and J.B. Butt, 68, 515, Elsevier, Amsterdam (1991)
- Morrow BA, Mcfrane RA, Lion M, Lavalley JC, J. Catal., 107, 232 (1987)
- Coward RS, Skarat WM, Oil Gas J., April(8), 86 (1985)
- Dupin T, Voirin R, Hydrocarb. Process., 61, 189 (1982)
- Saur O, Bensitel M, MohammedSaad A, Lavalley JC, Tripp CP, Morrow B, J. Catal., 99, 104 (1986)
- Chun SW, Park DW, Woo HC, Hong SS, Chung JS, J. Korean Ind. Eng. Chem., 6(5), 959 (1995)
- Othmer K, "Encyclopedia of Chemical Technology, 3rd ed., 23, 167, Wiley-Interscience, Publishers, New York (1983)
- Gamson BW, Elins RH, Chem. Eng. Prog., 49, 203 (1953)