Applied Microbiology and Biotechnology, Vol.98, No.6, 2667-2673, 2014
Comparison of microbial communities in sequencing batch reactors (SBRs) exposed to trace erythromycin and erythromycin-H2O
Wastewater treatment plants (WWTPs) are major collection pools of antibiotics of which low concentrations may induce antibiotic resistance in their microbial communities and pose threat to human health. However, information is still limited on the microbial community alteration in WWTPs upon exposure to low-dose antibiotics due to absence of negative control systems without input of resistant bacteria and resistance genes. Here we report the impact of trace erythromycin (ERY) and dehydrated erythromycin (ERY-H2O) on microbial community dynamics in three long-term (1 year) running sequencing batch reactors (SBRs), R1 (ERY-H2O), R2 (ERY), and negative control R3. The PhyloChip microarray analysis showed that ERY-H2O and ERY significantly altered their microbial communities based on bacterial richness (e.g., 825 operational taxonomic units (OTUs) in R1, 699 OTUs in R2, and 920 OTUs in R3) and population abundance (15 and 48 subfamilies with > 80 % abundance decrease in R1 and R2, respectively). ERY-H2O and ERY have broad but distinct antimicrobial spectrums. For example, bacteria of all the major phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi) present in SBRs were severely inhibited by ERY-H2O and ERY, but bacteria of Acidobacteria, Chlorobi, Firmicutes, Nitrospira and OP10 phyla were only inhibited by ERY. Very limited bacterial groups showed antibiotic resistance to ERY-H2O or ERY through forming biofilms (e.g., Zoogloea) or synthesizing resistant proteins (e.g., Thauera, Candidatus Accumulibacter, Candidatus Competibacter, and Dechloromonas) in the SBRs. Inhibition was observed to be the main effect of ERY-H2O and ERY on microbial communities in the reactors. The results would broaden our knowledge of effects of low-dose antibiotics on microbial communities in WWTPs.
Keywords:Antibiotics;Erythromycin (ERY);Dehydrated erythromycin (ERY-H2O);Microbial community;PhyloChip;Sequencing batch reactors (SBRs)